Section 7 Appendices

7.1 Appendix A Curricula Vitarum of Investigators

Curriculum Vitae

Name: John M alcolm Casselman (Principal Investigator, Fish, Fisheries, and A daptation - PI)
Institutional Address: A djunct Professor, Department of Biology, 2406 Biosciences Complex, 116 Barrie Street, Queen's University, K ingston, Ontario K 7L 3N 6; e-mail: john.casselman@ biology.queensu.ca; Phone: 613-533-6000 ext. 75371; Fax: 613-533-6617

A cademic Background:

B.S.A. 1964 Biology (fisheries management) University of Toronto
M.Sc. 1968 Zoology (fish ecology) University of Guelph

Ph.D. 1978 Zoology (fisheries science) University of Toronto

E mployment Background:

1974-1976 Senior A quatic Scientist, J.F. M acL aren, Engineers and Environmental Scientists 1976-2005 Senior Scientist, Scientist Emeritus, Ontario M inistry of Natural Resources, A geGrowth and Environmental Studies Unit, and Lake Ontario Research Unit
1985-present A djunct Professor, Department of Biology, Queen's U niversity, K ingston, ON
A reas of Expertise: Climate, fish and fisheries; population and community structure and dynamics; environmental requirements; growth and production; global warming, invasions and exotic fish; calcified structures; age determination; calcified structure analysis; eels and oceanic effect.

Research Related to Present Proposal: Research into age, growth, and production of fish, as well as long-term community indexing in Lake Ontario (5 decades), has demonstrated the significant overriding effects of climate change on fish populations and communities. Studies have involved structure and dynamics, abundance, predator-prey interaction, and invasive species, producing a series of publications that have quantified the impacts of global climate change on fish and fisheries. I have been invited to make numerous presentations: university lectures, public seminars, science forums, workshops, and keynote addresses for sport (OFAH) and commercial (OCFA) fishing groups and to senior governmental personnel, managers, deputies, and ministers. I have published by invitation in A merican Fisheries Society and peer-reviewed symposia and have used long-term temperature data to confirm that warming of a broad range of aquatic habitats matches global climate change. I am working on global climate change in Tibet by invitation of the Chinese A cademy of Sciences and in the A rctic for the U.S. N ational Science Foundation. Primary publications involve all thermal fish assemblages: warm-water (e.g., basses), cool-water (walleye and pike), and cold-water (lake trout and whitefish). I am extending my research on climate change to emphasize and understand adaptation and adaptive capacity at the species (e.g., pike) and resource-use levels to support decision making (fisheries policy, management, and assessment) in considering rapidly changing environmental factors. Received the 2008 A FS A ward of Excellence, the most prestigious award of the 138-year-old society, given annually in recognition of original and outstanding contributions to fisheries science and aquatic biology for lifetime achievements as a researcher, mentor, and leader.

Selected Published Articles on Climate C hange (Lifetime Primary Scientific Publications 110):

Casselman, J.M., and C.A. Lewis. 1996. Habitat requirements of northern pike Esox lucius. Canadian J ournal of Fisheries and A quatic Sciences 53(Suppl. 1): 161-174.
Casselman, J.M. 2006. Long-term pike recruitment: Effects of water level, impoundment, and climate change; evidence of adaptation. Presented at A merican Fisheries Society A nnual M eeting, International Pike Symposium, September 2006, Lake Placid, NY .
Casselman, J.M. 2008. Effects of climate and climate change on lake trout populations and fisheries. Second North A merican Lake Trout Symposium, Y ellowknife, NT. 16-19 A ugust 2005.

Curriculum Vitae

Name: Sobhalatha K unjikutty (Co-Principal Investigator, W ater M anagement and M odelling - Co-PI)
Institutional Address: W ater Resources Engineer, M ississippi V alley Conservation, 4175 Hwy 511, Lanark, Ontario K 0G 1K 0; E-mail: skunjikutty@ mvc.on.ca; Phone: 613-259-2421 Ext: 245; Fax: 613-259-3468

Academic Background:

B.Tech. 1993
M.E. 1995

Ph.D 2006

Bioresources Engineering
Soil and W ater Conservation Engineering Bioresources Engineering (Env. Eng. Research)

K erala University, India Tamilnadu University, India M cGill University, M ontreal

Employment Background:

1995-1996 Graduate Research A ssistant, Central W ater Research Institute, India
1996-1997 Research A ssociate, K erala University, India
1997-2002 A ssistant and A ssociate Engineer, Provincial Government of K erala, India 2002-2005 Doctoral Research Fellow/Research A ssistant, M cGill University, M ontreal 2005-Present W ater Resources Engineer, M ississippi V alley Conservation, Lanark, Ontario

Areas of Expertise: Engineering expertise in water resources, hydrologic, hydraulic, land and water conservation, and bioresources; modelling expertise in surface water, ground water, hydrologic, hydrodynamic, watershed, and contaminant transport models; provincial and federal environmental regulations/policies on source water protection and drinking water strategies; environmental risk assessment and management; current/emerging computer modeling techniques/software and programming languages

Research/Projects R elated to Present Proposal: Conducted studies on hydrological response in water resources development and management of low-and up-lands of K erala, India; impacts of water conservation structures on ground water; water quality improvement using floodplain filtration system; evaluation of environmental and socioeconomic impacts of soil-water conservation and watershed management projects; wastewater land application; and performance, conveyance loss, and cost benefit assessment of a large irrigation project in K uttiady, India, etc. Designed, supervised, and evaluated construction of various structures for water resources development and management, hydrological monitoring, and erosion control. Conducted modelling studies on fate and transport of pollutants (nutrients, pesticides, etc.) through soil-w ater-plant system; watershed based surface water, groundwater, hydraulic, hydrologic, and hydrodynamic models; artificial neural network models; numerical method of lines etc. Specific to the proposed study, conducted for M ississippi V alley Conservation a preliminary study of effects of long-term climate change on stream flow, using gauge data from A ppleton station

Selected Articles on Climate C hange (Scientific Publications, refereed and non-refereed: 33):

K unjikutty, S., P. Lehman, and A. B roadbend. 2006. Preliminary long term climate change study in watershed area of M ississippi V alley Conservation, St. Lawrence River Conference-Source W ater Protection, Cornwall, M ay 16-19, 2006.

Curriculum Vitae

Name: Paul Lehman (Co-Principal Investigator, W ater Resources M anagement and Planning - Co-PI)
Institutional Address: M ississippi V alley Conservation, 4175 Highway 511, Lanark, Ontario K 0G 1K 0; e-mail: plehman@ mvc.on.ca; Phone: 613-259-5307 ext. 223
Fax: 613-259-3468
A cademic Background:
B.A.Sc. 1981 Civil Engineering University of W aterloo

E mployment Background:

1981-1983 Project Engineer - Ontario M inistry of Natural Resources, K emptville, Ontario
1984-1989 W ater Resources Engineer - M ississippi V alley Conservation A uthority
1989 - present General M anager - Mississippi V alley Conservation A uthority
A reas of Expertise: W ater resources engineering, floodplain management, dam safety, hydrology and hydraulic modeling, project management

Research Related to Present Proposal: Chair of M ississippi River W ater M anagement Plan planning team and principle technical director.

Selected Published Articles on Climate C hange:

M ississippi River W ater M anagement Plan Steering Committee. 2006. M ississippi River W ater M anagement Plan. M ississippi V alley Conservation, Lanark, Ontario. 1,237 p. + appendices.

Curriculum Vitae

Name: Lucian A nthony M arcogliese (Co-Principal Investigator, Economics and Adaptation - Co-PI)
Address: 30 Salem Road, R.R. 1, A meliasburgh, Ontario K OK 1A 0; e-mail: marcogliese@ sympatico.ca; Telephone: 613-961-1529; Fax: 613-961-1529

A cademic Background:

B.E.S 1990 Environment and Resource Studies University of W aterloo M.Sc. 1995 W atershed Ecosystems Trent University

E mployment B ackground:

1991-1995 Fisheries B iologist, Ontario M inistry of N atural Resources (OM NR), Lake Ontario Research Unit
1995 Resource Technician, OM NR, Lake Ontario M anagement Unit 1995-present Consulting Research B iologist, working on a broad range of projects, involving climate change, fish and fisheries for OM N R, Department Fisheries and Oceans (DFO), Great Lakes Fishery Commission, T rent and Queen's universities, etc.

A reas of Expertise: Climate change; fish and fisheries; resource planning and management; fish commercial harvest, interrelationship between fish value, price, harvest, and abundance; stock identification and fish stocking success; assessing fish age, growth, and production in changing climatic conditions; effects of environmental factors, particularly temperature

Research Related to Present Proposal: E arly training in resource planning and management involving problem identification and solving by identifying user groups and concerns, public participation, and economical, social, cultural, biological, and political aspects in decision making while adhering to mandates and objectives of different agencies; knowledge of basic economic principles through accredited courses. Designed surveys and surveyed students at University of W aterloo to develop policy and implement recommendations concerning human health and safety standards. A nalyzed catch, effort, and gear data (CPUE) collected from First Nations fishers; assessed subsistence fishery in northwestern Ontario; proposed management options and implications while acknowledging traditional and cultural importance of fishery. Have experience with survey designed and conducted in 1970s (M arcogliese 1977) and will resurvey to measure changes in anglers' attitudes toward fish resources and economic value in Ontario in a changing climate. Contributed to management strategies for sustainable use of fish resources and associated social and economic benefits as part of Strategic Fisheries M anagement Framework for O ttawa River; examined relationship between temperature and global warming on fish production and recommended promoting use of the resource. Conducting North A merican-wide study for DFO-OM NR of commercial harvest and value of A merican eels and their interrelationships for a 5-decade period, considering regulatory changes and fishing effort.

Selected Articles on Climate C hange, Fisheries, Resource V alue (T otal Scientific Publications 8):

M ichalenko, G., L.A. M arcogliese, and M uskrat Dam B and. 1989. (A bstract) The subsistence lake sturgeon (Acipenser fulvescens) fishery of the Indian village of M uskrat Dam in Northwestern Ontario, Canada. A cipenser, 1st International Symposium on the Sturgeon, October 1989, B ordeaux, France.
Casselman, J.M , L.A. M arcogliese, and T. Haxton. 2003. Preparation and interpretation of pectoral spines for validated age and growth estimates of slow-growing, long-lived northern fish. Presented at A merican Fisheries Society 133rd A nnual M eeting, A ugust 10-14, 2003, Quebec City.
Casselman, J.M ., and L.A. M arcogliese. (In preparation.) L ong-term changes in A merican eel harvest and value, interrelationships and declining abundance. Conducted for OM NR and DFO.

7.2 Appendix A1 Fish and Fisheries: Adapting to a C hanging C limate

This appendix contains environmental data that were used in, and illustrate, the conditions that were part of the analysis of Changing Climate, Fish and Fisheries, Subproject 1. The data provide many decades of temperature, precipitation, and discharge conditions in the Bay of Quinte and inshore waters of Lake Ontario, as well as Ontario's Mississippi River and watershed. Detailed information concerning source, etc., is indicated in the specific table and figures. Selected graphs are provided that illustrate water and air temperature, precipitation, and discharge that are used in the analysis.

A ctual mean monthly water temperatures for a 70 -year period, from 1940 to 2009, are provided and formed the basis for water temperature analysis associated with the G reat Lakes B asin.

Air temperature data for the M ississippi River watershed are presented, illustrating specific selected conditions, indicating mean annual values and, where present, significant long-term trends.

Precipitation, in the form of both rain and snow, for the M ississippi River watershed are presented, illustrating specific selected conditions, indicating mean annual values and, where present, significant long-term trends.

Discharge for the M ississippi River at A ppleton are presented, illustrating specific selected conditions, indicating mean annual values and, where present, significant long-term trends. during the dataset, temperatures have been corrected for various anomalies (Casselman, unpublished data). These corrections are not numerous and have been made by using airtemperature data and water-temperature data measured specifically at the intake in the B ay of Quinte. Air-temperature data come from Belleville and Trenton, averaged, and K ingston airport, K ingston municipal pumping station, and K ingston hydro, as well as long-term data from Queen's University. A ssembled by and source, refer to J.M. Casselman, Queen's University, 2009 unpublished data.

Y ear	Jan	Feb	M ar	A pr	M ay	Jun	Jul	Aug	Sep	Oct	Nov	Dec	M ean
1940	0.56	0.56	0.56	2.92	14.77	20.67	21.79	23.53	17.94	11.47	4.63	1.11	10.04
1941	1.11	1.11	1.11	6.03	15.82	20.86	23.94	22.13	19.29	12.74	5.26	1.57	10.91
1942	1.11	1.11	1.29	8.03	16.09	20.67	23.26	22.70	19.56	12.25	4.46	1.11	10.97
1943	1.10	1.10	1.10	2.95	11.60	21.41	23.16	22.25	18.22	10.80	4.42	0.73	9.90
1944	0.60	0.60	0.86	3.28	14.84	20.36	23.93	23.36	18.68	11.60	5.14	0.65	10.33
1945	0.60	0.65	2.25	8.62	11.21	18.01	22.26	22.38	19.09	10.46	5.35	0.60	10.12
1946	0.60	0.60	1.98	7.61	13.35	19.16	24.55	22.12	18.16	12.22	6.87	0.85	10.67
1947	0.60	0.60	0.60	3.53	11.06	18.18	22.61	24.37	21.03	13.90	6.17	1.10	10.31
1948	1.10	1.10	1.10	7.07	12.81	19.52	23.36	22.40	20.52	12.25	8.02	2.34	10.97
1949	0.50	0.50	0.64	7.37	15.29	21.80	24.60	24.10	17.88	14.73	5.84	2.08	11.28
1950	0.75	0.65	0.69	4.56	13.57	19.82	22.23	22.14	17.61	12.84	5.89	0.70	10.12
1951	0.50	0.50	0.76	5.68	12.94	19.42	22.68	22.85	18.44	10.14	5.88	0.60	10.03
1952	1.02	1.10	1.17	7.35	14.17	20.10	24.65	22.83	19.45	9.95	4.26	0.95	10.58
1953	0.95	1.22	2.72	7.86	14.79	20.38	23.67	22.93	20.16	12.95	6.97	2.11	11.39
1954	0.48	0.53	0.70	6.76	14.61	20.77	23.11	22.79	18.70	13.36	5.53	1.35	10.72
1955	0.79	0.50	0.52	6.74	15.68	21.42	25.28	25.02	19.31	13.42	5.10	0.85	11.22
1956	1.10	1.10	1.10	2.96	11.36	20.03	21.44	22.01	17.68	12.15	7.22	1.06	9.93
1957	0.50	0.50	1.13	7.26	14.02	21.23	22.68	22.10	18.77	12.30	5.53	1.16	10.60
1958	0.52	0.50	0.85	7.78	12.54	17.74	22.29	22.19	18.64	12.95	7.53	1.39	10.41
1959	0.50	0.50	0.50	4.33	14.66	20.86	24.17	25.23	21.55	13.28	4.61	1.75	10.99
1960	0.50	0.50	0.50	4.15	14.68	20.47	22.20	22.56	19.47	12.79	6.00	1.35	10.43
1961	0.50	0.50	0.85	4.92	12.87	17.85	22.21	23.40	22.93	14.10	6.47	0.71	10.61
1962	0.50	0.50	0.62	5.36	16.39	21.44	22.76	21.90	19.05	12.62	4.35	1.80	10.61
1963	0.56	0.50	0.60	6.35	13.45	20.53	22.82	21.43	17.91	13.63	7.80	1.25	10.57
1964	0.53	0.50	0.75	6.25	15.83	19.57	24.38	20.64	18.90	10.44	5.94	1.10	10.40
1965	0.69	0.50	0.50	3.06	16.02	19.90	23.06	22.23	19.01	10.65	4.22	0.76	10.05
1966	0.50	0.50	1.19	6.60	11.95	20.15	25.07	23.10	19.08	11.50	5.47	1.23	10.53
1967	0.50	0.50	0.71	5.68	11.85	21.60	23.44	23.66	19.45	12.15	4.13	1.04	10.39
1968	0.50	0.50	0.68	9.31	14.14	19.31	23.27	22.44	20.17	14.13	4.45	0.52	10.78
1969	0.50	0.50	0.76	6.40	13.56	19.03	23.46	23.66	19.25	10.65	4.13	1.10	10.25
1970	0.58	0.50	0.50	5.27	15.46	20.72	22.69	24.47	18.83	13.79	6.55	0.82	10.85
1971	0.50	0.50	0.50	3.15	12.12	19.59	22.26	21.72	18.53	13.25	4.81	0.50	9.79
1972	0.50	0.50	0.50	2.34	13.01	17.93	22.06	20.77	18.83	9.88	3.23	0.52	9.17
1973	0.50	0.50	1.82	8.09	12.97	20.85	24.53	24.64	19.17	13.25	4.22	1.17	10.98
1974	0.50	0.50	0.76	5.68	12.94	19.42	22.68	22.85	18.44	10.14	5.88	0.60	10.03
1975	0.56	0.50	0.73	4.93	16.63	22.07	25.15	23.64	17.33	12.86	7.89	0.75	11.09
1976	0.50	0.50	0.50	8.35	12.61	21.52	22.45	22.02	18.53	10.69	2.89	0.50	10.09
1977	0.50	0.50	0.87	8.61	16.29	20.67	23.89	22.58	19.67	11.97	7.83	0.53	11.16
1978	1.00	1.00	1.00	3.33	13.85	21.13	23.98	23.61	18.82	12.26	6.57	0.56	10.59
1979	1.00	1.00	1.32	6.97	15.60	20.30	23.27	22.73	19.58	12.74	6.90	1.15	11.05
1980	0.64	0.69	0.38	7.32	15.32	18.80	23.45	24.76	20.02	11.89	4.18	0.59	10.67
1981	0.24	0.19	1.19	9.27	14.18	20.83	24.27	22.87	18.75	10.10	6.12	1.15	10.76
1982	0.88	0.69	0.37	4.52	15.69	20.08	23.65	21.69	18.10	13.48	6.85	1.75	10.65
1983	0.24	0.79	2.09	6.40	13.42	19.62	24.13	23.94	21.30	13.26	5.68	0.80	10.97
1984	0.91	0.77	0.06	6.92	13.34	20.60	23.08	24.06	18.90	13.90	6.47	0.99	10.83
1985	0.64	0.22	0.40	6.90	15.97	18.80	22.76	22.90	19.12	13.60	5.82	0.57	10.64
1986	0.48	0.45	0.40	8.87	16.37	20.25	23.23	23.08	17.72	12.85	5.58	0.94	10.85
1987	0.96	0.69	1.32	10.60	15.84	21.97	24.95	23.16	18.87	12.08	6.10	1.04	11.46
1988	1.01	0.77	1.11	8.08	15.15	20.52	23.29	24.98	18.83	11.63	5.83	1.20	11.03
1989	1.17	1.20	1.56	6.38	14.45	20.93	24.53	23.60	19.90	11.31	5.87	0.88	10.98
1990	0.96	0.53	1.03	7.05	14.68	20.57	23.21	24.06	19.55	12.37	5.85	1.43	10.94
1991	0.24	0.62	1.29	8.18	16.73	22.82	24.52	23.31	20.67	12.37	5.43	0.94	11.42
1992	1.14	0.79	0.25	5.80	15.34	20.07	21.66	21.27	19.23	11.65	4.70	1.15	10.25
1993	0.32	0.19	0.01	4.50	13.92	18.83	23.63	23.63	19.18	10.91	5.03	1.16	10.11
1994	0.72	0.53	0.29	5.79	13.18	20.03	23.98	22.38	18.62	13.12	7.85	1.63	10.68
1995	0.86	0.54	2.22	7.11	14.24	21.36	24.08	24.55	18.34	13.11	4.24	0.80	10.95
1996	0.79	0.61	0.78	6.26	13.16	20.76	23.02	23.47	20.39	12.76	5.49	1.91	10.78
1997	0.56	0.50	0.63	5.27	11.94	20.33	23.98	22.87	19.00	13.11	4.60	1.15	10.33
1998	1.10	0.89	2.21	9.43	18.02	20.53	24.24	24.19	20.72	13.61	6.49	3.38	12.07
1999	1.14	1.04	1.71	8.57	17.10	22.64	25.03	23.03	20.56	12.53	6.40	2.37	11.84
2000	1.10	0.89	2.98	7.39	15.07	19.27	22.37	23.38	19.73	12.77	6.33	1.26	11.05
2001	0.81	0.41	0.56	6.70	16.82	20.87	23.08	24.79	20.15	12.58	7.37	4.31	11.54
2002	0.70	1.13	1.00	7.50	11.80	19.60	24.80	24.80	22.10	11.30	4.20	1.10	10.84
2003	0.79	0.80	0.75	4.78	13.55	18.40	22.84	23.98	20.11	10.96	4.69	0.80	10.20
2004	0.95	0.59	0.71	6.53	14.63	19.30	22.08	21.77	19.94	12.95	7.23	3.07	10.81
2005	0.75	1.85	1.84	6.82	12.74	21.19	24.50	23.07	20.19	12.73	6.54	3.35	11.30
2006	2.09	1.69	2.49	8.53	13.85	19.07	24.78	24.05	18.70	11.85	6.19	2.44	11.31
2007	1.65	0.34	1.00	5.46	15.65	22.35	21.20	23.60	20.58	15.87	6.38	1.34	11.28
2008	0.42	0.16	1.07	8.54	15.02	23.17	25.03	23.78	21.26	13.25	5.43	1.10	11.52
2009	2.29	0.58	2.56	8.29	15.53	19.73	22.63	24.32	20.45	11.29	7.48	2.10	11.44
M ean	0.76	0.67	1.02	6.39	14.29	20.28	23.42	23.13	19.35	12.35	5.73	1.27	10.73

A ppendix A 1.2. M ean annual thermal units (degree days - C) for surface water temperature for the upper B ay of Quinte for a 68-year period, 1940-2007. The accumulated sum of the residuals (CUSUM , ${ }^{\circ} \mathrm{C}$) about the mean is also provided, indicating the years when dynamic change occurred. The regression line, curved 95% confidence limits, equation, and associated statistics are provided. W ater temperature was measured in upper bay at the B elleville municipal pumping station for water drawn at approximately 3.2 m . B ay of Quinte water temperatures at this location are homothermous.

 1935194019451950195519601965197019751980198519901995200020052010

A ppendix A 1.3. M ean monthly surface water temperature for the open-water period (A pr-Sep) for the upper B ay of Quinte for a 68-year period, 1940-2007. The accumulated sum of the residuals (CUSUM, ${ }^{\circ} \mathrm{C}$) about the mean is also provided, indicating the years when dynamic change occurred. The regression line, curved 95% confidence limits, equation, and associated statistics are provided. W ater temperature measured in upper bay at the B elleville municipal pumping station for water drawn at approximately 3.2 m . B ay of Quinte water temperatures at this location are homothermous.

A ppendix A 1.4. Duration of high temperature period $\left(>20^{\circ} \mathrm{C}\right)$ for surface water temperatures for the upper Bay of Q uinte for a 68 -year period, 1940-2007. The accumulated sum of the residuals (CUSUM ${ }^{\circ} \mathrm{C}$) about the mean is also provided, indicating the years when dynamic change occurred. The regression line, curved 95% confidence limits, equation, and associated statistics are provided. W ater temperature measured in upper bay at the Belleville municipal pumping station for water drawn at approximately 3.2 m . B ay of Quinte water temperatures at this location are homothermous.

A ppendix A 1.5. M ean monthly midsummer surface water temperature (Jul-Aug) for the upper Bay of Quinte for a 69 -year period, 1939-2007. The accumulated sum of the residuals (CUSUM, ${ }^{\circ} \mathrm{C}$) about the mean is al so provided, indicating the years when dynamic change occurred. M eans and 95% confidence intervals are provided. M eans with large closed up arrow indicate a high temperature extreme ($>95 \%$ confidence limit for the period) and correspond to and indicate the expression of an El Niño event that year in the tropical Pacific. Small closed up arrows indicate EI Niño events in the tropical Pacific that were not expressed by significantly increased midsummer water temperatures in the Bay of Quinte. Large open down arrows indicate low temperature extremes (>95\% confidence limit for the period) and correspond to and indicate the expression of a La Niña event that year in the tropical Pacific. Small closed down arrows indicate El Niño events in the tropical Pacific that were not expressed by significantly increased midsummer water temperatures in the B ay of Quinte. W ater temperature was measured in upper bay at the Belleville municipal pumping station for water drawn at approximately 3.2 m . Bay of Quinte water temperatures at this location are homothermous.

A ppendix A 1.6. M ean monthly summer air temperature for the M ississippi River and watershed for a 74 -year period, 1932-2005, as estimated from air temperature at seven E nvironment C anada stations in the watershed and vicinity of A ppleton. The accumulated sum of the residuals (CUSUM,${ }^{\circ} \mathrm{C}$) about the mean is also provided, indicating the years when dynamic change occurred. The regression line, curved 95\% confidence limits, equation, and associated statistics are provided.

A ppendix A 1.7. M ean monthly air temperature for the open-water period (A pr-Nov) for the M ississippi River and watershed for a 74-year period, 1932-2005, as estimated from air temperature at seven Environment Canada stations in the watershed and vicinity of A ppleton. The accumulated sum of the residuals (CUSUM , ${ }^{\circ} \mathrm{C}$) about the mean is also provided, indicating the years when dynamic change occurred. The regression line, curved 95% confidence limits, equation, and associated statistics are provided.

A ppendix A 1.8. M ean monthly air temperature for the open-water period (May-Dec) for the Mississippi River and watershed for a 74 -year period, 1932-2005, as estimated from air temperature at seven Environment Canada stations in the watershed and vicinity of A ppleton. The accumulated sum of the residuals (CUSUM,$^{\circ} \mathrm{C}$) about the mean is also provided, indicating the years when dynamic change occurred. The regression line, curved 95% confidence limits, equation, and associated statistics are provided.

A ppendix A 1.9. M ean monthly air temperature for the closed-water period (Dec-M ar) for the M ississippi River and watershed for a 74-year period, 1932-2005, as estimated from air temperature at seven Environment Canada stations in the watershed and vicinity of A ppleton. The accumulated sum of the residuals (CUSUM, ${ }^{\circ} \mathrm{C}$) about the mean is also provided, indicating the years when dynamic change occurred. The regression line, curved 95% confidence limits, equation, and associated statistics are provided.

A ppendix A 1.10. M ean monthly air temperature for the closed-water period (J an-A pr) for the M ississippi River and watershed for a 74 -year period, 1932-2005, as estimated from air temperature at seven Environment Canada stations in the watershed and vicinity of A ppleton. The accumulated sum of the residuals (CUSUM,$^{\circ} \mathrm{C}$) about the mean is also provided, indicating the years when dynamic change occurred. The regression line, curved 95% confidence limits, equation, and associated statistics are provided.

A ppendix A 1.11. M ean monthly midsummer air temperature for the M ississippi River and watershed for a 74-year period, 1932-2005, as estimated from air temperature at seven E nvironment Canada stations in the watershed and vicinity of A ppleton. The accumulated sum of the residuals (CUSUM,${ }^{\circ} \mathrm{C}$) about the mean is also provided, indicating the years when dynamic change occurred. The regression line, curved 95\% confidence limits, equation, and associated statistics are provided.

A ppendix A 1.12. M ean monthly precipitation (rain and snow) for the M ississippi River and watershed for a 68-year period, 1938-2005, as estimated from precipitation measured at seven E nvironment Canada stations in the watershed and vicinity of A ppleton. The accumulated sum of the residuals (CUSUM, oC) about the mean is also provided, indicating the years when dynamic change occurred.

A ppendix A 1.13. M ean monthly winter and spring precipitation (rain and snow) (Dec-M ay) for the Mississippi River and watershed for a 68-year period, 1938-2005, as estimated from precipitation measured at seven Environment Canada stations in the watershed and vicinity of A ppleton. The accumulated sum of the residuals (CUSUM ${ }^{\circ} \mathrm{C}$) about the mean is also provided, indicating the years when dynamic change occurred.

A ppendix A 1.14. M ean monthly fall precipitation (rain and snow) (Sep-Nov) for the Mississippi River and watershed for a 68-year period, 1938-2005, as estimated from precipitation measured at seven E nvironment Canada stations in the watershed and vicinity of A ppleton. The accumulated sum of the residuals (CUSUM, ${ }^{\circ} \mathrm{C}$) about the mean is also provided, indicating the years when dynamic change occurred. M eans and 95\% confidence intervals are provided, including the regression line, curved 95\% confidence limits, equation, and associated statistics.

A ppendix A 1.15. M ean monthly discharge $\left(\mathrm{m}^{3} \cdot \mathrm{~s}^{-1}\right)$ of the M ississippi River as measured at the A ppleton gauge just upstream from the A ppleton control dam and hydroelectric facility of Canadian Hydro Developers for a 74-year period, 1932-2005. The accumulated sum of the residuals (CUSUM,${ }^{\circ} \mathrm{C}$) about the mean is also provided, indicating the years when dynamic change occurred. Dotted line indicates mean.

A ppendix A 1.16. M ean monthly spring and summer discharge (M ar-A ug) $\left(\mathrm{m}^{3} \cdot \mathrm{~s}^{-1}\right.$) of the M ississippi River as measured at the A ppleton gauge just upstream from the A ppleton control dam and hydroelectric facility of Canadian Hydro Developers for a 74 -year period, 1932-2005. The accumulated sum of the residuals (CUSUM,${ }^{\circ} \mathrm{C}$) about the mean is also provided, indicating the years when dynamic change occurred. Dotted line indicates mean.

A ppendix A 1.17. M ean monthly fall and winter discharge (Sep-Feb) ($\mathrm{m}^{3} \cdot \mathrm{~s}^{-1}$) of the M ississippi River as measured at the A ppleton gauge just upstream from the A ppleton control dam and hydroelectric facility of Canadian Hydro Developers for a 74-year period, 1932-2005. The accumulated sum of the residuals (CUSUM,${ }^{\circ} \mathrm{C}$) about the mean is also provided, indicating the years when dynamic change occurred. The regression line, curved 95% confidence limits, equation, and associated statistics are provided.

7.2 Appendix A2 W eathering C limate C hange- Stakeholders Outreach and Science Transfer W orkshop

Egginton, P., and B. Lavender. [2009, manuscript report]. From impacts towards adaptation: M ississippi watershed in a changing climate. A summary of stakeholder workshops held in A Imonte, Ontario, 2007. Sponsored by M ississippi V alley Conservation and M ississippi V alley Field Naturalists. 50 pages. See www.mvc.on.ca, 2009.

Cover page

7.2 Appendix A3 Impacts, Adaptive C apacity, and Socio-economic C onsequences of C limate C hange on Fish Resource Use and Management in Ontario: A Survey of Resource Users, Businesses, and Professionals

A copy of the survey follows this page and should be referenced as:
M arcogliese, L.A. 2008. Questionnaire and survey used to determine economics, consequences, and adaptation to climate change, conducted with fish resource users (anglers, businesses, professionals). Survey, unpublished research form, A meliasburg, Ontario. 25 pages.

All respondents who completed and returned questionnaires were eligible, at the participant's request, to participate in a random draw to win a stay for four, graciously donated by Tumblehome Lodge, Crotch Lake, M ississippi Valley Watershed. Draw was held on F ebruary 20, 2008.

The announcement of the draw was illustrated with the following graphics:

Win a Stay for Four at Tumblehome Lodge on Crotch Lake, Mississippi Valley Watershed

- Visit the website at www.virtualnorth.com/tumblehome

Jerry Mitrovich from St. Catharines, Ontario, was the winner of the prize package that included a two-night stay for four and the use of a pontoon boat for a day at Tumblehome Lodge, located on Crotch Lake in the Mississippi Valley Watershed. Jerry obtained his copy of the survey from the website of the Ontario Federation of Anglers and Hunters. Over 200 people submitted a survey, and Jerry's name was randomly drawn from these submissions.

*** Survey ***
 We solicit your assistance in a survey of adaptation and climate change in relation to fish, fisheries, and waterresource use

Participant: We are soliciting your assistance with an anonymous survey we are conducting on climate change, fisheries, and water-resource use. This study is sponsored by Natural Resources Canada and is part of a more extensive study of "Fish, Fisheries, and W ater Resources: A dapting to Ontario's Changing Climate." The component with which we request your assistance involves evaluating your opinions, perceptions, and adaptations to changing aquatic resources: "Examining Impacts and Economic Consequences of Global Climate Change on Fish Resources and Resource Use". The survey is being conducted through Queen's University at K ingston, with the cooperation of several agencies, including M ississippi V alley Conservation and M ississippi V alley Field Naturalists.

We would appreciate your participation in completing the accompanying questionnaire. Participation is voluntary. The questions deal specifically with fisheries use and experiences, past and present, and include issues or concerns you have for the future of the resource and its use. W hen you have completed the questionnaire, please return it by e-mail to Lucian M arcogliese or by ground-mail to Lucian A.M arcogliese, 30 Salem Road, R.R.1, A meliasburgh, Ontario K 0K 1A 0. We hope to have them returned by February 11, 2008. All completed and returned questionnaires will be eligible, at the participants request, to participate in a random draw to win a stay for four, graciously donated by Tumblehome L odge, Crotch Lake, M ississippi V alley W atershed. Draw will be held on February 20, 2008.

This research will allow us to gauge past, present, and future resource use and make recommendations that will take into consideration social and economic concerns of resource users in relation to global climate change and adaptation. W orking with resource users and understanding their willingness to adapt will provide the cornerstone for sound scientific recommendations and management.

For quality control purposes and in the event you win the draw, you will be asked to provide your name and contact information, which only this researcher will have access to. All questionnaires, however, are anonymous and confidential as each respondent will be given a random number for all subsequent data entry and analyses. All answers will be compiled and used only through a statistical analysis, presenting average results for the survey, which we hope will consist of some 500 questionnaires. Y our decision to complete and return this questionnaire will be interpreted as an indication of your consent to participate. If you are interested in the results of the survey, we expect to post them in the spring, 2008, on the websites of Mississippi Valley Conservation (http://www.mvc.on.ca/), and the OFAH (http://www.ofah.org/). After completion of the study, all personal information will be destroyed. The personal information on this form is collected under the authority of the Queen's Royal Charter of 1841, as amended.

We look forward to your response and greatly appreciate your time and effort.
If you have any questions or concerns please contact:
Lucian A. M arcogliese, M .Sc., Consulting Research Biologist, 30 Salem R oad, R.R. 1, A meliasburgh, Ontario K OK 1A 0, Phone: 613-961-1529, e-mail: ccfsurvey@ sympatico.ca

J ohn M. Casselman, Ph.D , A djunct Professor, Queen's U niversity, Department of Biology, 116 Barrie Street K ingston, Ontario K 7L 3N6, Phone: 613-533-6000 ext. 75371, e-mail: casselmj@ queensu.ca

General Research Ethics Board, Queen's University, K ingston, Ontario, K 7L 3N6, Phone: 613-533-6081, e-mail: greb.chair@queensu.ca

All participants who return a completed questionnaire are eligible to win a two night stay for four at Tumblehome L odge, C rotch Lake, in the M ississippi V alley W atershed

- Two nights accommodations valid M ay10-J une 28, or A ugust 24 to closing, 2008, (subject to availability)
- Use of a pontoon boat for a day
- V isit the Tumblehome Lodge website (http://www.virtualnorth.com/tumblehome/).

Please indicate if you wish to be entered in the draw to win the trip at Crotch Lake.

Yes		No

Survey Guidelines:

1. Please read and follow the instructions carefully and answer each question in sequence. Do not go back to fill in or change answers.
2. All lists in survey questions are presented in al phabetical or chronological order.
3. When asked to check boxes or indicate, mark with an \mathbf{X}.
4. For electronic surveys, C omments box will expand as needed. If comments are long, formatting on following pages may be affected. This is not a problem as long as you can follow the questions.
5. For paper surveys, additional comments can be made at the end of survey. Indicate the Section, Question Number, and any information needed to match your comments to the proper question. Please print clearly.
6. Three main groups associated with fish resources in Ontario are being asked to participate in this survey. They are:
a. A nglers- (casual to avid)
b. Business Service Providers- (lodges, camps, etc.)
c. Fish Resource Professionals- (career or occupation)

In Section 2 of the survey you will be asked which of these three groups best describes your association with fish resources in Ontario. Some participants may find they belong to more than one group.
Note: A similar survey is also being conducted with bait fishers, commercial fishers, and First N ations.
7. The survey is shorter than it appears as you will not have to answer all sections of the survey. Sections are designed for the three different fish resource groups. Anglers- $\mathbf{1 8}$ pages; B usinesses- $\mathbf{1 6}$ pages; Professionals- 15 pages.
8. Only answer sections that apply to you. If you belong to more than one group, complete the sections that apply to groups you belong to.
9. If you indicated 'Other' (Group 4), for your Group association with fish resources, complete sections that best describes your association with fish resources.
10. Depending on the detail of comments you provide, tests indicate the survey takes $\mathbf{3 0 - 6 0}$ minutes to complete if you are answering for one group associated with fish resources.
11. For non-Ontario residents, answer questions as they relate to your experiences and fishing in Ontario only.
12. W e hope to have the completed surveys returned by February 11, 2008.

Thank you in advance for your time and effort, we look forward to your response.
Lucian A. M arcogliese and J ohn M. C Casselman

Ontario Fish Resource Study

Section 1- Issues- To be completed by all Participants

1. Below are listed some issues of concern regarding fish resources in Ontario. Please list in order of importance the four (4) issues that you consider to have the highest priority for Ontario's fish resources. Rank the most important as one (1), the second most important as two
(2), and so on.

No.	Issue	R ank	Comments
1	Administration powers to Clubs and A ssociations (more or less)		
2	Climate change (affects)		
3	Enforcement services		
4	Invasive species- non-native		
5	Habitat		
6	Hatchery operations and stocking		
7	L amprey control		
8	Pollution control		
9	Property owner and fish user relations		
10	Public education		
11	Regulations and laws		
12	Research: biological aspects of the fish resource		
13	Research: needs of the fish resource user		
14	W ater conditions- levels, flow, temperature		
15	Other: please specify		

Section 2- Primary Fish Resource Users, B usinesses, Professionals, and A ssociationsTo be completed by all Participants

1. Indicate the G roup (No. 1-4, bolded and shaded) that best describes your association with fish resources. If more than one Group pertains to you, indicate the Group that pertains most to you with one (1), and second most with two (2), and so on. If you indicated more than one Group, estimate by percent, how often that Group pertains to you in a given year. Total percent should equal 100%.
2. Listed under each Group are A ssociations and/or uses of the fish resource. For the Group(s) you indicated, check as many A ssociations or uses that pertain to you.

3. What Species or Group of fish do you usually attempt to catch (A nglers); your customers attempt to catch (Businesses); or are considered most important in the area you work in fisheries (Resource Professionals)? Rank the 4
(four) most important species in order of importance. Rank the most important as one (1), the second most important as two (2), and so on.
4. Of these four species, estimate by percent, How often you (anglers), or your customers (businesses) attempt to catch this Species or Group; or for fish resource Professionals, it's importance in your District or A rea. Total percent should equal 100%. If possible, indicate species for Salmon, and Sunfish.

No.	Species or Group	Anglers		Businesses		Professionals	
		Rank	\%	Rank	\%	Rank	\%
1	Brook trout						
2	Brown bullhead						
3	Brown trout						
4	Burbot						
5	Carp						
6	Channel catfish						
7	Ciscoe (herring)						
8	Crappie (white and black)						
9	Lake sturgeon						
10	Lake Trout						
11	Largemouth bass						
12	M uskellunge						
13	Northern pike						
14	Rainbow trout						
15	Rock bass						
16	Salmon (indicate type)						
17	Sauger						
18	Smallmouth bass						
19	Sunfish (bluegill, pumpkinseed)						
20	Walleye (pickerel)						
21	Whitefish						
22	White perch						
23	White sucker						
24	Y ellow perch						
25	Other: please specify						

5. How long have you had an association with fish in any capacity? Y ears

Section 3- To be completed by all Groups (G roups 1-4)

Survey Participants

Please answer or check the appropriate box.

1. Name and contact information. Strictly confidential will not be used except for quality control purposes and the draw.

Name	
Contact	
Information	

2. Sex

Male		Female	

3. A ge (yrs)

Under 20		$50-59$	
$20-29$		$60-69$	
$30-39$		$70-79$	
$40-49$		80 and over	

4. Were you born in Ontario?

Yes	No	

5. A re you a resident of Ontario?

Yes		No	

6. If yes, what County in Ontario do you reside?

County

7. If yes, using M ap 1, indicate the area in Ontario that you reside?

Area	Description	C heck
1	Northern Ontario (north of N orth Bay-Lake N ipissing)	
2	Southern Ontario (south of North Bay-Lake Nipissing)	
3	M ississippi River W atershed (Lennox, L anark, Frontenac counties, City of Ottawa)	

8. How Iong have you lived in this A rea of Ontario?

Years
9. If you are not a resident of Ontario, where do you reside?

Province	
State	
Other: please specify	

Section 4- To be completed by all Groups (G roups 1-4) Observations and Affects

1. In the areas you fish; operate a fish resource business; or work in fisheries; Have you noticed any meteorological (weather) related environmental changes? (see list below)

Yes	No	

2. If yes, from the list below:

- Rank the environmental changes you have noticed. Rank the most noticeable change as 1 (one), the second most noticeable change as 2 (two), and so on. Only rank the changes you have noticed.
- Indicate the year you first noticed the environmental change, or provide an approximate time period (i.e. 1970-75).
- For the changes you have indicated, please comment on how they have changed.

No.	E nvironmental Changes	R ank	Year(s)	How have conditions changed?
1	A ir temperature			
2	D rought			
3	Flooding			
4	Ice-cover (duration)			
5	Ice-cover (thickness)			
6	Rainfall			
8	Snowfall			
9	W ater flow			
10	W ater levels			
11	W ater temperature			
13	W inds			

3. Have any of these environmental changes you indicated affected your fishing; your customer's fishing; or your work in fisheries? Yes No

- If yes, rank the environmental change with the most affect as 1 (one), the second most as 2 (two), and so on. Include and rank only the environmental changes you have indicated in the previous question (Question \# 2).
- Have the environmental changes you listed had a positive (P), negative (N), or no affect (NA) on your fishing; your customer's fishing; or your work in fisheries? Please check the appropriate box.
- For environmental changes you indicated as having either a positive or negative affect, please Comment on how these changes affected your fishing; your customer's fishing; or your work in fisheries.

No.	E nvironmental Changes	Rank	Affect			Comments	
			P	N	NA		
1	A ir temperature						
2	Drought						
3	Flooding						
4	Ice-cover (duration)						
5	Ice-cover (thickness)						
6	Rainfall						
7	Snowfall						
8	Spring runoff (snow melt)						
9	W ater flow						
10	W ater levels						
11	W ater temperature						
12	W inds						
13	Other: please specify						

4. In the areas you fish; have fish resource businesses; or work in fisheries; Have you noticed any fish community changes?

Yes		No	

If yes, from the list below:

- Rank the fish community changes you have noticed. Rank the most noticeable change as 1 (one), the second most noticeable change as 2 (two), and so on. Only rank the changes you have noticed.
- Indicate the year you first noticed the fish community change, or provide an approximate time period (i.e. 1970-75).
- For the changes you have indicated, please comment on how they have changed. If applicable, indicate the species you are referring to.

No.	Fish C ommunity C hanges	Rank	Year(s)	How has the fish community changed?
1	Introduced species (fish stocking)			
2	Invasive species - non-native (fish, animal, plant)			
3	Plants- protruding above water (weeds)			
4	Plants- submerged (weeds)			
5	Species type (fish)			
6	Species abundance (fish)			
7	Species size (fish)			
8	W ater clarity (algae blooms)			
9	Other: please specify			

5. Have any of these fish community changes you indicated affected your fishing; your customer's fishing; or your work in fisheries? Yes

No

- If yes, rank the fish community change with the most affect as 1 (one), the second most as 2 (two), and so on. Include and rank only the fish community changes you have indicated in the previous question (Question \#4).
- Have the fish community changes you listed had a positive (P), negative (N), or no affect (NA) on your fishing; your customer's fishing; or your work in fisheries? Please check the appropriate box.
- For fish community changes you indicated as having either a positive or negative affect, please Comment on how these changes affected your fishing; your customer's fishing; or your work in fisheries.

No.	Fish Community Changes	Rank	Affect			Comments
			P	N	NA	
1	Introduced species (fish stocking)					
2	Invasive species- nonnative (fish, animal, plant)					
3	Plants protruding above water (weeds)					
4	Plants submerged (weeds)					
5	Species type (fish)					
6	Species abundance (fish)					
7	Species size (fish)					
8	W ater clarity (algae blooms)					
9	Other: please specify					

6. Do you know of any examples of how global climate change has affected fish communities in Ontario?

Yes	No

7. Do you feel that global climate change has impacted the use of fish resources in Ontario?

Yes	No	Do Not K now	

8. Do you attribute any of the environmental or fish community changes you listed previously in this Section (Questions 2 \& 4) on global climate change?

Yes	No	Do Not K now	

- If yes, list the environmental and fish community changes you attribute to global climate change?

No.	Environmental C hanges	Fish Community Changes
1		
2		
3		
4		
5		
6		
7		
8		

Please complete the following Sections that pertain to the Group that best describes your association with fish resources (Section 2).
Group 1-A ngler-Resource U ser
Group 2-B usiness Service Providers (guide, resort operator etc.)
Group 3- Fish Resource Professional (Conservation Officer, Technician etc.) — Occupation
Group 4- Other (answer sections that best match your association with fish resources, i.e. Group 1, 2, 3)
If you indicated in Section 2 that you belonged to more than one of these G roups (i.e. Business Service Provider and Angler), please complete Sections pertaining to all Groups that you belong.

Section 5--T o be completed by Anglers (G roup 1)

C urrent Use

1. Including yourself, how many people in your household fish in Ontario?

Number

2. How long have you fished in Ontario?

Years

For questions 3 to 7, refer to Section 3, M ap 1 (Ontario), page 6.
3. Using M ap 1, what percent of your yearly fishing occurs in each area of Ontario? T otal should equal 100\%.

Area	Description	Percent
1	N orthern Ontario (north of N orth Bay-Lake Nipissing)	
2	Southern Ontario (south of N orth Bay-Lake Nipissing)	
3	M ississippi River W atershed (L ennox, Lanark, Frontenac counties, City of Ottawa)	

4. Using M ap 1, how long have you fished in each area?

Area	Description	Years
1	N orthern Ontario (north of N orth Bay-Lake Nipissing)	
2	Southern Ontario (south of N orth Bay-Lake Nipissing)	
3	M ississippi River W atershed (L ennox, Lanark, Frontenac counties, City of Ottawa)	

5. If you fish in A reas 1 or 2 (southern or northern Ontario--M ap 1), what percent of your yearly fishing occurs in the Great Lakes and their tributaries in Ontario?

Area	Description	Percent
1	Northern O ntario (north of N orth Bay-Lake Nipissing)- Lake Superior, N. Channel	
2	Southern Ontario (south of N orth Bay-Lake Nipissing)- lakes Huron, Erie, Ontario, Georgian Bay	

6. If you fish in A reas 1 or 2 (southern or northern Ontario--M ap 1), what lakes, rivers, streams, do you fish most often? List up to three. If known, what watershed do they belong to?

No.	Lakes, R ivers, Streams	
1		
2		
3		

7. If you fish in A rea 3 (M ississippi River W atershed - M ap 1), what lakes, rivers, streams, do you fish most often? L ist up to three.

No.	Lakes, Rivers, Streams
1	
2	
3	

8. A re you a member of an A ssociation, Club, or Federation? If yes, please indicate the name.

Yes	No		Name:	

9. Why do you fish? R ank in order of importance the reasons why you fish. Rank the most important as one (1), the second most important as two (2), and so on. Only rank the reasons that pertain to
you.

No.	Reason	Rank	
1	Challenge		
2	Competition		
3	Culture/Heritage		
4	Enjoyment		
5	Family time		
6	Food		
7	Outdoor lifestyle		
8	Relaxation		
9	Right to fish		
10	Socialize		
11	Sport		
12	Tradition		
13	Other: please specify		

10. A pproximately how many days a year do you fish in Ontario?

Days

11. What percent of your fishing occurs during the open-w ater season, and during the ice-fishing season?

Season	Percent (\%)
Open-water	
Ice fishing	

12. By season, estimate how much you spend per year on fishing trips and equipment for you and your family. Some items have been listed to help you estimate expenses. If you do not know the expense related to specific Items, estimate your Total expenses.

Items	Open-water Expenses (\$)	Ice fishing Expenses (\$)
Bait		
B oat and motor (purchases, repairs, rentals etc.)		
Charter or guide services		
Food and beverage		
Gas		
Gear (rods, reels, lures, clothing, etc.)		
Lodging		
Supplies		
Souvenirs		
Other: please specify		
Total		

Section 6-T o be completed by Business Service Providers (G roup 2G uides, O utfitters, R esort O perators etc.)

C urrent Use

1. Do you own a fish resource business or are you employed by a fish resource business?
Own Employed

- If you are employee of a fish resource business (i.e. Guide), answer questions on the basis of the service you provide.

If you operate your own business, how many people do you employ?

Employees	Number	E mployees	Number
Contract		Part-time Seasonal	
Fulltime		Seasonal	
Part-time		Other: please specify	

2. How long have you worked in the fish resource business in Ontario?

Years

3. Indicate the years in which you have worked in the fish resource business in Ontario.

	From	To
Current		2007
Past		

For questions 4 to 7, refer to Section 3, Map 1 (Ontario), page 6.
4. Using M ap 1, what percent of your yearly business occurs in each area of Ontario? Total to equal 100\%.

Area	Description	Percent
1	N orthern Ontario (north of N orth Bay-Lake N ipissing)	
2	Southern Ontario (south of N orth Bay-Lake Nipissing)	
3	M ississippi River W atershed (L ennox, Lanark, Frontenac counties, City of Ottawa)	

5. If your business operations or work in fisheries are in A reas 1 or 2 (M ap 1), what percent of your yearly business or work occurs in the G reat Lakes Region and their tributaries in Ontario?

Area	Description	Percent
1	Northern Ontario (north of N orth Bay-Lake Nipissing)- Lake Superior, N. Channel	
2	Southern Ontario (south of N orth Bay-Lake N ipissing)- lakes Huron, Erie, Ontario, Georgian Bay	

6. If your business operations or work in fisheries are in A reas 1 or 2 (M ap 1), what lakes, rivers, streams, are you located or work on? List up to two. If known, what watershed do they belong to?

No.	Lakes, Rivers, Streams	Watershed
1		
2		

7. If your business operations or work in fisheries are in A rea 3 (M ississippi River W atershed - M ap 1), what lakes, rivers, streams, are you located or work on? List up to two.

No.	Lakes, R ivers, Streams
1	
2	

8. A pproximately how many days a year do you operate your business or work in fisheries in Ontario?

Days

9. What percent of your fisheries business or work occurs during the open-water season, and the ice-cover season?

Season	Percent (\%)
Open-water	
Ice-cover	

10. A pproximately how many customers do you have in each season?

Season	Number
Open-water	
Ice-cover	
Total	

11. By season, what percent of your customers are local Ontario residents (within 100 km or 1 hour drive), Regional Ontario residents (between 100-200 km or 1-2 hours drive), Provincial Ontario residents (greater than 200 km or 2 hours drive), and Non-Ontario residents?

Customers	Open-water (\%)	Ice-cover (\%)
Local Ontario residents		
Regional Ontario residents		
Provincial Ontario residents		
Non-Ontario residents		

12. By season, does your business or service cater strictly to customers that fish, or do you run a multiuse facility (beach, water sports, snowmobiling, skiing etc.)? Check boxes as they pertain to your business.

C ustomers	Open-water	Ice-cover
A nglers		
M ulti-use facility		

13. If your business is multi-use, by season, what percent of your customers fish?

Season	Percent fish (\%)
Open-water	
Ice-cover	

14. If your business is multi-use, by season, what percent of your business would you attribute to fishing?

Season	Percent of business (\%)
Open-water	
Ice-cover	
Total	

15. By season, estimate how much each fish resource customer would spend at your business or for your service in a day. Some items have been listed to help you estimate expenses and only pertain to you if you operate a store or gas bar. Only estimate customers expenses that pertain to your business or service. If you do not know the expense related to specific Items, estimate your customers Total expenses.

Items	Open-water daily expenses (\$)	Ice-cover daily expenses (\$)	Comments
Bait			
Boat and motor (rentals)			
Charter or guide services			
Food and beverage			
Gas			
Gear (lures, line, etc.)			
Souvenirs			
Lodging			
Supplies			
Other: please specify			
Total			

Section 7- To be completed by Fish Resource Professionals (G roup 3C onservation Officers, B iologists etc.).

1. How long have you been a Fish Resource Professional?
\square
Years
2. How long have you been a Fish Resource Professional in Ontario?

Years

3. Using M ap 1 (Section 3), what A rea in Ontario do you currently work?

Area	Description	Check
1	N orthern Ontario (north of N orth Bay-Lake N ipissing)	
2	Southern Ontario (south of N orth Bay-Lake Nipissing)	
3	M ississippi River W atershed (Lennox, Lanark, Frontenac counties, City of Ottawa)	
4	All of the above	

4. How long have you worked in this A rea?

Years
5. If you work in A reas 1 or 2 (M ap 1, Section 3), does your jurisdiction include any of the G reat L akes Region?

Area	Description	Check
1	Northern Ontario (north of N orth Bay-Lake Nipissing)- Lake Superior, N. Channel	
2	Southern Ontario (south of N orth Bay-Lake N ipissing)- lakes Huron, Erie, Ontario, Georgian Bay	

Section 8-A daptations and E conomic C onsequences

Introduction\&Impacts of Global Climate C hange

Environmental Changes

- Changes can be variable across regions that include: extreme air temperatures, flooding or drought, changes in precipitation, water temperature, flow, run-off, and ice cover.
- Seasonal changes include: earlier springs and later falls, delayed lake cooling and fall turnover, decreased duration of winter ice cover, lack of winter precipitation, reduced spring run-off and flow.

Fish C ommunity C hanges

- Subtle environmental changes can result in significant changes in fish resources that include: grow th, maturity, reproductive success, survival, abundance, and changes in community structure.
- A daptation by the fish community will occur: changes in thermal guild will occur, but degree and type of change in any given waterbody is locale and species dependent.
- In general, freshwater fish in Ontario are classified as warm, cool, or coldwater species on the basis of their thermal requirements.
- While relatively new, the scientific literature is growing and indicates that as global climate change and warming progresses, warm water species will thrive and become more abundant while coldwater species will diminish.
- Some species will most likely be lost to local communities, especially coldwater species in the southern portion of their range.
- Species that become too abundant within a waterbody, risk being stunted because of limited space and food.
- Presently, adult coldwater species are surviving, but recruitment failure has been documented in several lake trout lakes, resulting in progressively large and aging fish populations.
- Increased warming can alter the thermocline, which would threaten survival of adult coldwater species.
- Impacts on coolwater species are less well known, but their range appears to be shifting progressively northward.

Below are listed a number of species and their thermal classification.

W armwater	C oolwater	C oldwater
Brown bullhead	B rown trout	B rook trout
Carp	L ake sturgeon	Burbot
Channel catfish	M uskellunge	Ciscoe (herring)
Crappie (white and black)	N orthern Pike	Lake trout
Cyprinids (minnows)	Sauger	Salmon
Largemouth bass	R ainbow trout	Whitefish
Rock bass	W alleye (pickerel)	
Smallmouth bass	Y ellow perch	
Sunfish (bluegill, pumpkinseed)		
White perch		
White sucker		

Section 8A to 8C - A daptations to E nvironmental and Fish Community Changes

- Sections 8A to 8C deal with impacts of environmental and fish community changes due to global climate change (listed above) and how G roups (1-4) associated with fish resources would adapt to these changes.

Section 8A - T o be completed by all Groups (G roups 1-4)

- If the environmental and fish community changes listed above (Section 8) occurred in your area, answer the following questions by indicating how you believe these changes would affect your future fishing (anglers); your customers future fishing (businesses); or for Fish Resource Professionals, fishing in your District.
- Check the box corresponding to the number that best reflects your opinion of the statement.
- If you are answering these questions as a member of more than one Group, answer using one (1) for A ngler, two (2) for Business Service Provider, or three (3) for Fish Resource Professional. If you are filling two numbers in one box, separate them with a comma (,).

1. There will be less time and effort spent fishing during the ice-cover season.
Agree

| Deutral | | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{1}$ | | $\mathbf{2}$ | | $\mathbf{3}$ | | $\mathbf{4}$ | | 5 | $\mathbf{5}$ |

2. There will be a shorter ice-cover season, but effort will be more intense during that period.

Agree
$\mathbf{1}$

3. There will be more time and effort spent fishing during the open-water season.

Agree									isag
1	2	3	4	5	6	7	8	9	

4. There will be more time and effort spent fishing at night (i.e. walleye).
Agree

Agree
$\mathbf{~} 1$

2
3
Neutral
4
6
2 7

5. There will be less time and effort spent fishing during the day.

Agree
$\mathbf{1}$

6. Dates in which A nglers typically book fishing trips will have to be altered to coincide with the weather.

Agree
1

7. Fishing patterns and techniques will have to change.

Agree
1

1
2
|
Neutral
Disag
8. Fishing depths will have to change.

Agree
1

9. Habitat fished will have to change.
Agree

| Neutral | | | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{1}$ | | $\mathbf{2}$ | | $\mathbf{3}$ | | $\mathbf{4}$ | | $\mathbf{5}$ | $\mathbf{6}$ | Disag |

10. New fishing sites within a waterbody will have to be located.

Agree									isag
1	2	3	4	5	6	7	8	9	

- On the basis of the areas you fish; your customers fish; or your work in fisheries in Ontario, answer the following question. A nswer for all Groups you belong to.

11. What one species is the most important to your fishing (anglers); your customers fishing (business);
or fishing in your District (professionals)?

No.	Group	
1	Angler	
2	Business Service Provider	
3	Resource Professional	

12. Using the list of thermal classifications (Section 8), H ow is this species classified? Check the appropriate box.

No.	Group	Warmwater	Coolwater	C oldwater	Not listed
1	Angler				
2	Business Service Provider				
3	Resource Professional				

13. W ould you consider an increase in warmwater species a positive (\mathbf{P}) or negative (\mathbf{N}) change in your area, or both (B)?

No.	Group	P	N	B	
1	Angler				
2	Business Service Provider				
3	Resource Professional				

14. Any additional Comments

Comments

Section 8B - To be completed by Anglers (Group 1)

15. How far do you travel to the area you most often fish?

Traveling Distance	Open-water	Ice-cover
Locally (within 100 km or 1 hour drive)		
Regionally (between 100-200 km or 1-2 hours)		
Provincially (greater than 200 km or 2 hours)		
Out-of-Province		

16. A pproximately how many day, weekend, or weekly trips do you take in a year to the area you most often fish?

Duration	Open-water	Ice-cover
Day		
W eekend		
W eekly		
Other: please specify		

- If you consider an increase in warmwater species a positive change in the area you most often fish, answer questions 17 to 20.
- If you consider an increase in warmwater species a negative change in the area you most often fish, answer questions 21 to 28.
- If you consider an increase in warmwater species both a positive and negative change in the area you most often fish, answer all questions from 17 to 28.

Positive change

17. I would increase my fishing effort in the area I most often fish.

Agree
1

1 2 \square Neutral
18. Since abundance of warmwater species is increasing, I would look for new fishing areas closer to wherel live.

Agree Neutral ${ }^{\text {a }}$ Disag									
1	2	3	4	5	6	7	8	9	

19. W ould you Increase, Decrease, or Not Change how often you go fishing? Check the appropriate box.

| Duration of fishing |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| trip | $\mathbf{y y}^{|c|}$ Open-water

20. Any additional Comments

Comments

Negative C hange

21. I would decrease my fishing effort in the area I most often fish.

Agree
1

Neutral al
22. I would stop fishing completely.
A gree
1
 2

Neutral
6
23. I would change locations and find a new lake or river to fish.

Agree
$\mathbf{1}$

24. How much farther would you be willing to travel to find a new lake, river, or area to fish?

Traveling Distance	Open-water	Ice-cover
I would not travel farther (0 km)		
Locally (within 100 km or 1 hour drive)		
Regionally (between $100-200 \mathrm{~km}$ or 1-2 hours)		
Provincially (greater than 200 km or 2 hours)		
Out-of-Province		

25. W ould you Increase, Decrease, or Not Change how often you go fishing? Check the appropriate box.

| Duration of fishing |
| :--- | :--- | :--- | :--- | :--- | :--- |
| trip |\quad| Open-water | | | Ice-cover | | |
| :--- | :--- | :--- | :--- | :---: | :---: |
| | I | D | NC | | |
| Day | | I | D | | |
| NC | | | | | |
| W eekend | | | | | |
| | | | | | |
| W eekly | | | | | |
| | | | | | |
| Other: please specify | | | | | |
| | | | | | |

26. I would not change locations, instead I would target different species that are more abundant.

Agree
$\mathbf{1}$

If you would target different species, would you have to purchase new fishing gear or equipment?

Yes	No	

27. I would get just as much satisfaction from catching a different species (warmwater).

Agree
$\mathbf{1}$

28. A ny additional Comments

Comments

Section 8C - T o be completed by all G roups (G roups 1-4)

Impacts to Fish Resource Use

29. On the scale below, estimate by percentage whether future changes in environmental conditions and the fish community due to climate change would increase, decrease, or not change:

A nswer question for your Group:

- A nglers (Group 1)-H ow often you go fishing.
- Business Service Providers (Group 2)-The impacts on your customer base.
- Fish Resource Professionals (Group 3)-The impacts on fish resource use in your area.
- Check the appropriate box. NC is 0% or No Change.
- If you are answering this question as a member of more than one Group, answer by using one (1) for A ngler, two (2) for Business Service Provider, or three (3) for Fish Resource Professional.

30. On the scale below, estimate by percentage whether future changes in environmental conditions and the fish community would increase, decrease, or not changed:

A nswer question for your Group:

- A nglers (Group 1)-The yearly amount you spend on fishing trips and equipment.
- Business Service Providers (G roup 2)-The impacts on your business income.
- Fish Resource Professionals (Group 3)- The impacts on fish resource revenue in your area.
- Check the appropriate box. NC is 0% or No Change.
- If you are answering this question as a member of more than one Group, fill the appropriate box with a one (1) for A ngler, two (2) for Business Service Provider, or three (3) for Fish Resource Professional.

Section 9-T o be completed by all G roups (G roups 1-4)

Future Direction and M anagement of Fish Resources

Environmental and fish community changes are occurring in Ontario. The real and changing value of fish resources, and social and economic impacts to communities will be determined by adaptation to these changes by resource users, businesses, and professionals.

1. Should management actions be taken that adopt and incorporate environmental and fish community changes due to climate change?

Yes		No

- Listed below are examples of adaptive M anagement A ctions that could be taken to offset social and economic impacts of environmental and fish community changes due to global climate change.
- C heck the box corresponding to the number that best reflects your opinion of the statement.

M anagement Action \#1- Public Education

2. A public education program should be developed to inform people of fish resource changes due to climate change.

Agree
1

3. Education programs should emphasize the value of all fish resources in Ontario.

M anagement Action \#2- Promotion

4. All types of fishing (boat, shoreline, ice), of more abundant species (warmwater) should be encouraged.

Neutral
Agree
$\mathbf{1}$

5. Catch-and-keep of more abundant species (warmwater) should be encouraged.

Agree
$\mathbf{1}$

6. Fishing of less abundant species (cool and coldwater) should be discouraged.

Agree
1

|

$\mathbf{2}$		$\mathbf{3}$	

Neutral
4 5
6

7

			Disag	
8		9		

7. Catch-and-release of less abundant species (cool and coldwater) should be encouraged.
Agree
1
I
2
,

Neutral

	6	7

,
sag

M anagement Action \#3-Removal and Harvest Programs

8. If warmwater species become too abundant, removal programs should be implemented to reduce their numbers.

Agree Neutral
$\mathbf{1}$

9. Removal programs should be initiated before warmwater species become too abundant.
Agree
Neutral

$\mathbf{1}$		2		3		$\mathbf{4}$		5

5

10. Catch-and-keep fishing derbies of warmwater species should be initiated that encourage family and youth participation, and includes fisheries education, prizes, and fish fry.

Agree
1

2
| 3 |

Neutral
5

	6

7

M anagement Action \#4- Stocking

11. If recruitment failure is occurring, cool and coldwater species should be stocked to support and maintain the existing fishery.

A gree									isag
1	2	3	4	5	6	7	8	9	

12. Stocking should be used to support put-and-leave fisheries where recruitment failure is occurring.

Agree $\mathbf{1}$ Stocked Agree $\mathbf{1}$

2
Neutral
5

13. Stocked fish should be the progeny (young) of wild adults from the same waterbody.
1
2
3
Neutral

4		5

5		6

7
rruitm \qquad
14. Genetic diversity and the loss of wild gene pool that stocking could cause is a big concern.
Agree

1 2 3 3
Neutral
5
6
| 7 |
8 |
Disag
15. Catching a stocked fish provides just as much satisfaction as catching a wild fish.

Agree)isag
1	2	3	4	5	6	7	8	9	

16. Only existing species within a waterbody should be stocked.

Agree

Neutral

5	6		

17 |

8
17. Stocking should only occur when native fish have been essentially eliminated from the waterbody.

Agree
$\mathbf{1}$

I
2
3 3

Neutra
5

minated from
18. Stocking should be used to create put-grow-and-take fisheries where and when native stocks have been eliminated.
Agree
1 , 2 3 5
Neutral
4
5
25. On what basis should management actions be taken? Check the appropriate box.

- What basis would be most important? \mathbf{O} nly R ank numbers $\mathbf{1}$ to $\mathbf{3}$, and 5 if used. Rank most important as one (1), second most important as two (2), and so on.

No.	Basis	Check	Rank	
1	Economic			
2	Scientific			
3	Social			
4	All of the above			
5	Other: please specify			

26. Should a Fish Policy and M anagement Plan be developed to deal with impacts and adaptations to climate change?

Yes		No	

If yes, W ho should participate in developing the Policy and M anagement Plan? Please indicate.

Participants	Comments

27. Any additional Comments

Comments

Section 10-To be completed by all \mathbf{G} roups (G roups 1-4)

W ater M anagement and M ulti- Purpose Use

1. In your area, are water levels and flows natural or regulated by dams?

Natural		Regulated

2. In areas that are regulated, primary importance during high abundance of water is to manage flows and levels to prevent flooding. However, during periods of low water abundance several water uses need to be considered. Please list in order of importance the uses that you consider should have the highest priority for managing water flow and levels during low water abundance. Rank the most important use as one (1), the second most important as two (2), and so on.

Water Use	Rank	
A griculture		
Consumption		
Environmental Sensitive A reas		
Fish nursery habitat		
Fish spawning areas		
Historical or traditional sites		

Homes and cottages		
Hydro generation		
Navigation/Transportation		
W ater sports and recreation		
Other: please specify		

Thank you!

If you are completing and returning this survey electronically, be sure to save it and attach it to an e-mail addressed to Lucian M arcogliese, otherwise, follow instructions on cover page.

A ny Additional Comments

Section	Question	Comments

7.3 Appendix A4 W ater M anagement Response to C limate C hange

A ppendix A4.1. M ean and standard deviation of actual and generated temperature data
Mean and Standard Deviation of Temperature for actual [1985-2003], 2010-2039, 20402069 \& 2070-2099 periods

A ppendix A4.2. M ean and standard deviation of actual and generated precipitation data
Mean and Standard Deviation of Precipitation for actual [1985-2003], 2010-2039, 20402069 \& 2070-2099 periods

Appendix A4.3. Statistical analysis results of ClimGen generated climate data for 2010-2039.

Variable	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Wet-day count	389	322	322	347	350	335	342	313	396	361	445	366
Dry-day count	541	525	608	553	580	565	588	617	504	569	455	564
Wet days following dry-days count	191	171	170	170	149	157	182	157	189	183	190	214
Wet days following wet-days count	198	151	152	177	201	178	160	156	207	178	255	152
Days of valid data count	930	847	930	900	930	900	930	930	900	930	900	930
Precipitation mean	83.52	51.31	47.5	72.31	65.46	77.58	90.73	78.08	93.9	78.93	93.09	62.86
Maximum temperature for all days												
mean	-0.63	-1.185	4.566	12.6	21.97	24.85	27.67	26.28	20.79	12.82	6.903	-0.54
sum	-589	-1003	4246	11343	20436	22366	25729	24443	18712	11925	6213	-500
SD	6.033	5.792	6.771	7.463	5.305	4.656	3.917	4.405	4.955	5.797	6.397	6.194
min.	-20.6	-25.28	-14.9	-8.82	3.786	10.45	15.64	13.32	5.57	-4.36	-10.7	-20.7
max.	17.01	18.84	24.55	34.95	38.05	38.39	40.62	40.85	38.44	29.24	25.81	17.9
count	930	847	930	900	930	900	930	930	900	930	900	930
Minimum temperature for all days												
mean	-10.5	-12.79	-6.74	1.392	7.452	11.8	15.16	12.92	8.392	2.047	-2.67	-8.84
sum	-9757	-10829	-6265	1253	6930	10617	14095	12017	7553	1903	-2403	-8220
SD	9.039	8.435	8.44	3.857	5.099	4.506	3.877	4.817	5.084	5.253	5.805	5.06
min.	-44.1	-41	-37.2	-12.2	-8.8	-1.32	4.225	-2.35	-8.37	-13.6	-17.8	-26.6
max.	10.39	9.536	13.89	12.95	23.58	24.57	26.48	25.88	22.82	19.87	13.61	9.743
count	930	847	930	900	930	900	930	930	900	930	900	930

Appendix A4.4. Statistical analysis results of ClimGen generated climate data for 2040-2069.

Variable	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Wet-day count	348	346	283	283	354	356	377	300	407	399	422	386
Dry-day count	582	502	647	617	576	544	553	630	493	531	478	544
Wet days following	194	194	158	147	155	172	207	160	174	181	170	199
dry-days count												
Wet days following	154	152	125	136	199	184	170	140	233	218	252	187
wet-days count												
Days of valid data count Precipitation mean	930	848	930	900	930	900	930	930	900	930	900	930
Maximum temperature for all days	58.81	48.22	53.84	79.29	76.57	108	79.64	104.7	96.85	83.82	61.62	
mean	1.557	0.779	5.69	13.41	23.55	26.15		29.32	27.06	22.44	14.99	7.68
sum	1448	660.9	5292	12066	21902	23533	27268	25162	20200	13941	6912	-594
SD	5.166	4.955	6.376	8.196	4.863	4.418	3.402	4.358	5.184	5.196	6.688	5.741
min.	-18.3	-15.24	-11.3	-9.5	2.972	14.04	17.03	12.76	4.111	-0.95	-10.5	-18
max.	22.1	13.92	30.33	40.97	41.76	44.5	38.9	39.98	40.08	31.78	26.56	16.87
count	930	848	930	900	930	900	930	930	900	930	900	930
Minimum temperature for all days												
mean	-6.28	-9.172	-3.53	1.754	8.317	13.57	17.1	13.91	10.26	4.426	-2.16	-9.06
sum	-5837	-7778	-3282	1578	7735	12214	15900	12940	9231	4116	-1941	-8425
SD	7.216	7.333	6.923	4.037	5.478	4.307	2.999	4.435	5.528	5.406	6.353	4.821
min.	-39.1	-30.51	-30.8	-20.8	-7.72	-1.75	7.641	-1.53	-9.99	-15.6	-19.5	-27.6
max.	12.58	10.85	15.39	17.28	24.38	25.6	26.89	26.73	27.61	18.9	15.83	5.638
count	930	848	930	900	930	900	930	930	900	930	900	930

Appendix A4.5. Statistical analysis results of ClimGen generated climate data for 2070-2099.

Variable	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Wet-day count	370	337	249	338	375	343	362	314	421	406	420	360
Dry-day count	560	510	681	562	555	557	568	616	479	524	480	570
Wet days following	206	163	138	161	166	147	201	178	198	185	182	205
dry-days count												
Wet days following	164	174	111	177	209	196	161	136	223	221	238	155
wet-days count												
Days of valid data count	930	847	930	900	930	900	930	930	900	930	900	930
Precipitation mean	61.32	74.17	41.42	72.15	91.43	78.72	96.72	76.66	87.44	89.29	101	64.03
Maximum temperature for all days												
Mean	2.038	3.376	6.939	15.83	26.56	27.75	30.26	28.75	23.8	16.61	8.444	-0.88
sum	1895	2859	6453	14247	24701	24975	28141	26739	21424	15446	7600	-820
SD	4.443	4.561	6.186	9.647	4.231	4.51	3.689	4.506	5.482	5.581	6.919	6.559
min.	-10.9	-7.98	-11	-6.66	9.329	12.74	17.7	8.207	9.02	-1.53	-13	-21.7
max.	24.12	23.37	33.28	46.08	39.55	40.3	41.15	40.36	38.79	34.74	29.61	20.06
count	930	847	930	900	930	900	930	930	900	930	900	930
minimum temperature for all days												
mean	-2.89	-4.422	-0.7	3.288	10.93	15.98	18.14	15.65	11.22	5.548	-1.83	-9.19
sum	-2691	-3745	-649	2959	10161	14379	16870	14558	10100	5160	-1649	-8545
SD	4.784	6.786	6.27	3.896	6.213	4.661	3.617	4.295	5.718	5.825	6.915	4.777
min.	-22.9	-30.52	-29.4	-18.2	-9.73	1.838	6.108	0.729	-7.67	-14.2	-21	-25.8
max.	9.898	10.84	15.75	17.12	32.9	31.91	28.86	29.97	27.8	22.89	20.06	9.14
count	930	847	930	900	930	900	930	930	900	930	900	930

A ppendix A4.6. Actual and predicted precipitation trend at M ississippi watershed (1985-2099 periods).
Precipitation

A ppendix A4.7. Actual and predicted minimum, maximum, and mean temperature trend in the Mississippi watershed (1985-2099 periods).

Appendix A4.8. Regression and Mann-Kendall Statistics.

			Mann-Kendall Statistics	
Data period	Regression equation	Coefficient of determination (r)	Z value	Significant level (α)
$\mathbf{1 9 8 5 - 2 0 0 3}$				
Precipitation	$\mathrm{Y}=-0.176 \mathrm{~T}+72.46$	0.118321596	-0.28	>0.1
Min. temp.	$\mathrm{Y}=0.125 \mathrm{~T}-0.771$	0.664078309	2.73	0.001
Max. temp.	$\mathrm{Y}=0.052 \mathrm{~T}+11.11$	0.349284984	1.68	0.1
Mean temp.	$\mathrm{Y}=0.063 \mathrm{~T}+5.387$	0.4	1.54	>0.1
2010-2099				
Precipitation	$\mathrm{Y}=0.041 \mathrm{~T}+73.93$	0.114017543	1.43	>0.1
Min. temp.	$\mathrm{Y}=0.052 \mathrm{~T}+0.878$	0.889943818	8.93	0.001
Max. temp.	$\mathrm{Y}=0.040 \mathrm{~T}+12.32$	0.842614977	8.97	0.001
Mean temp.	$\mathrm{Y}=0.046 \mathrm{~T}+6.6$	0.877496439	9.2	0.001

A ppendix A 4.9. Simulated vs. observed stream flow for the M ississippi River at A ppleton for the year 1999.
Simulated vs O bserved Streamflow (1999)
M ississippi River @ Appleton (WSC 02K F006)

A ppendix A4.10. Simulated vs. observed stream flow at M ississippi River at A ppleton for the year 2001

