

Mississippi Valley Conservation Authority

Casey Creek Flood Plain Mapping Study

Draft January 2020 Final May 2021

Chapter 1 Contents

Executive Summary	
1.0 Introduction	4
1.1 General	4
1.2 Study Area	5
1.3 Previous Studies	7
1.4 Flood Plain Analysis and Stormwater Management Design	8
2.0 Hydrology	8
2.1 Methodology	8
2.2 Watershed Characteristics Affecting Runoff	9
2.3 Development of the HEC-HMS Model of Casey Creek	9
2.4 Verification of Model Performance	
2.4.1 Ontario Flow Assessment Tool	
2.4.2 Comparison of Flows and Verification	
2.5 Flows for Flood Plain Delineation	
2.5.1 Comparison to Previous Studies	20
2.6 Conclusions and Recommendations	22
3.0 Hydraulic Analysis	23
3.1 Methodology	23
3.2 Input Parameters	23
3.3 Flood Plain Elevations	27
3.3.1 Sensitivity Analysis	27
3.3.1.1 Design Flows	27
3.3.1.2 Manning's n Value	
3.3.1.3 Boundary Condition	
4.0 Regulatory Flood Plain Delineation	
4.1 Flood Prone Areas	
4.2 Remedial Measures	
5.0 Regulation Limit	
6.0 Conclusions and Recommendations	
7.0 References	
Appendices	

List of Tables

Table 1: HEC-HMS Parameters	12
Table 2: Rainfall Depths (mm)	14
Table 3: Peak Flows at the Watershed Outlet) (m3/s)	19
Table 4: Flow Comparison at the Downstream End of the Casey Creek Watershed (m ³ /s)	20
Table 5: Flows Values Used in HEC-RAS Analysis (m3/s)	24
Table 6: Constance Lake Flood Elevations	26
Table 7: Casey Creek Calculated 100-year Water Elevations	27
Table 8: 100-year Water Elevation Results - Increased Flow Values	28
Table 9: 100-year Water Elevation Results- Varied Manning's n Values	29
Table 10: 100-year Water Elevation Results - 100-year Flow on Casey Creek with the 100-year Water	
Level on Constance Lake	29
Table 11: Map Scale	31
Table 12: Topographic Map Check Results	33

List of Figures

Figure 1: Casey Creek Watershed Location Plan	6
Figure 2: Casey Creek Watershed Land Use	6
Figure 3: Casey Creek Study Reaches	7
Figure 4: Casey Creek Hydrologic Soil Group	10
Figure 5: Casey Creek Sub-catchment Delineation	10
Figure 6: HEC-HMS Model Schematic	11
Figure 7: Twelve Flood Frequency Regions	16
Figure 8: Three Flood Frequency Regions (OFAT)	17
Figure 9: Peak Flow per Unit Area	22
Figure 10: Flood Line Delineation	
Figure 11: Topographic Map Check Points	32

Appendices

- Appendix A LiDAR Acquisition Report Appendix B – SWMHYMO Parameters Appendix C – Reach Overview Figures Appendix D – Cross-Section Plots Appendix E – Structure Database Appendix F – Water Surface Elevations for Casey Creek
- Appendix G Regulation Limit Flow Chart
- Appendix H Technical Review Comments and Responses

Executive Summary

In co-operation with and funding support from the City of Ottawa, Mississippi Valley Conservation Authority (MVCA), Rideau Valley Conservation Authority (RVCA), and South Nation Conservation (SNC) undertook a five-year program of updating flood hazard maps throughout the City of Ottawa. This report was prepared by MVCA and is the summary of analysis and findings for the flood plain analysis of Casey Creek.

Located in the northeast end of the City of Ottawa, Casey Creek is tributary to Constance Lake. With a total drainage area of approximately 55 km², the main channel of Casey Creek extends a distance of approximately 6.5 km from Marchurst Road, at the upstream end, to its outlet at Constance Lake. The outlet of Casey Creek discharges to Constance Lake through the Provincially Significant Constance Creek Wetland.

There are three main tributary branches of Casey Creek that join the watercourse immediately upstream of Dunrobin Road and between Dunrobin Road and Old Second Line Road. The watershed is dominated by agricultural land uses, wooded areas, some rural residential development and wetlands in the extreme upstream watershed.

Section 2.0 of the report documents the hydrologic analysis conducted for this study to estimate the flows for the Casey Creek watershed for use in defining the Regulatory flood levels. The return period flows generated by employing the 12-hour SCS rainfall simulations produced the highest and similar peak flows, to other methods, for Casey Creek.

Section 3.0 documents the hydraulic analysis conducted for this study to estimate the flood levels for the 2, 5, 10, 25, 50 and 100-year (Regulatory event) for the study reaches. The study reaches include the main branch of Casey Creek from its outlet at Constance Lake upstream to Marchurst Road and the northwest tributary from the confluence with the main branch upstream to Thomas Dolan Parkway, the middle tributary from the confluence with the main branch upstream to Marchurst Road and the south tributary from the confluence with the main branch upstream to Marchurst Road and the south tributary from the confluence with the main branch upstream to Marchurst Road and the south tributary from the confluence with the main branch upstream to Marchurst Road.

Section 4.0 documents the delineation of the Regulatory flood plain. The Regulatory (100-year) flood plain elevations were used to plot the Regulatory flood lines using ArcGIS. The Regulatory flood levels were used to produce a Triangulated Irregular Network (TIN) surface in ArcGIS. The intersection of the TIN and the Light Detection and Ranging (LiDAR)-derived terrain determines the location of the Regulatory flood line. The flood-prone areas are documented, although no existing structures and only one road is impacted by floodwaters.

Section 5.0 documents the process used in determining the extent of the Regulation Limit for Ontario Regulation 153/06 (MVCA's regulation under Section 28 of the *Conservation Authorities Act*) the presence of all potential hazards must be considered to determine the requisite (most extensive) hazard. The Regulation Limit is defined by a 15 m buffer beyond the requisite hazard.

Flooding in Canada can occur from such diverse sources as snowmelt, extra-tropical storms, flash thunderstorms or jamming of ice during spring break-up. Inundation of the flood plain of a river or lake during such times is a natural occurrence. However, the flood damages which often result are not. They are the consequence of human development of flood plain lands.

Such development has historically occurred because of the use of rivers as transportation routes, sources of power and water and because much of the best agricultural land is located in the flood plain. The resulting conflict with the river at flood times has led to a variety of approaches to controlling flooding. The earliest records of attempts, in North America, to modify the relationship between humans and floods stretch back to 1617. This involved the use of dykes by early French settlers in the Bay of Fundy region to protect areas for agricultural purposes [1]. Methods have generally focussed on various structural measures such as flood control dams, channelization or diversion works. In the absence of such works, the alternative has often been the payment of disaster assistance from the public purse to the sufferers of flood damages.

Floods are the most commonly occurring natural hazard in Canada and account for the largest portion of disaster recovery costs on an annual basis [2]. In light of trends towards increases in flood disaster assistance payments, greater pressure for flood plain development and the potential environmental problems associated with structural flood control measures, it has been recognized that a more comprehensive approach to flood plain management is required. Policies based on a full evaluation of both structural and non-structural alternatives, such as restriction of flood vulnerable development in high flood risk areas, as well as structural approaches are necessary.

One of the responsibilities of the Mississippi Valley Conservation Authority (MVCA) is the identification of flood hazards and flood plain lands for the implementation of regulations made under Section 28 of the *Conservation Authorities Act* and to support the Authority's delegated role to represent the Provincial interest with respect to natural hazards under Section 3.1 of the *Provincial Policy Statement* (PPS). As detailed in Ontario Regulation 153/06, the applicable Regulatory flood event standard used to determine the susceptibility to flooding of lands or areas within the watersheds, for the MVCA, is the 100-year flood event. For the MVCA watershed, this is referred to as the Regional Flood. The 100-year flood event standard, as defined in Ontario Regulation 153/06, means the rainfall or snowmelt, or a combination of rainfall and snowmelt, which produces at any location in a river, creek, stream, or watercourse, a peak flow that has a probability of occurrence or exceedance of one percent during any given year. Accurate flood plain mapping is required for effective flood plain management.

Within the City of Ottawa there are three Conservation Authorities; the MVCA, Rideau Valley Conservation Authority (RVCA), and South Nation Conservation (SNC). In 2012, the MVCA, RVCA, and SNC, in cooperation with and financial assistance from the City of Ottawa, developed a 5-year plan to update flood plain mapping within the City of Ottawa and produce new flood plain mapping where it currently does not exist. In 2017 a second five-year contribution agreement was signed to continue the flood plain mapping work. The priority watercourses for study and the production of flood plain maps were ranked based on the presence and intensity of existing and predicted future development.

There is no existing flood plain mapping for Casey Creek. It was determined as a priority watercourse to complete a flood plain mapping study and development of flood plain maps due to its proximity to village boundaries and the potential for rural estate development within the watershed. Previously, the MVCA had no formal methodology to update the mapping on an ongoing basis, although it should be noted that, as part of the above noted agreements, a protocol has been established for updating flood plain mapping regularly.

The objectives of the *Casey Creek Flood Plain Mapping Study* were:

- 1. To determine the magnitude of design flows for various return periods and the Regional flood event for the study area.
- 2. To delineate the flood plain under the Regulatory (100-year) flood event for Casey Creek within the study limits.
- 3. To have the flood hazard areas incorporated in the City of Ottawa planning documents (Official Plan and Comprehensive Zoning document) and for use in administering Ontario Regulation 153/06.

This study was carried out in accordance with the *Technical Guide: River & Stream Systems: Flooding Hazard Limit* Ontario Ministry of Natural Resources [3] and with consideration of the City of Ottawa *Sewer Design Guideline* [4].

1.2 Study Area

Located in the northeast end of the City of Ottawa, Casey Creek is tributary to Constance Lake as shown in Figure 1. With a total drainage area of approximately 55 km², the main channel of Casey Creek extends a distance of approximately 6.5 km from Marchurst Road, at the upstream end, to its outlet at Constance Lake. The outlet of Casey Creek discharges to Constance Lake through the Provincially Significant Constance Creek Wetland.

There are three main tributary branches of Casey Creek that join the watercourse immediately upstream of Dunrobin Road and between Dunrobin Road and Old Second Line Road. The watershed is dominated by agricultural land uses, wooded areas, some rural residential development and wetlands in the extreme upstream watershed as shown in Figure 2.

For much of the watershed, the flood plain valley section is ill-defined so that there are some wider flood plain sections and some spills along the watercourse reach. There are some reaches where the flood plain is relatively narrow and is generally confined within a valley system, considering the context of the flow to be conveyed. At the downstream end of the watershed, around Constance Lake, there is a wetland area and flows can spill overland to the lake.

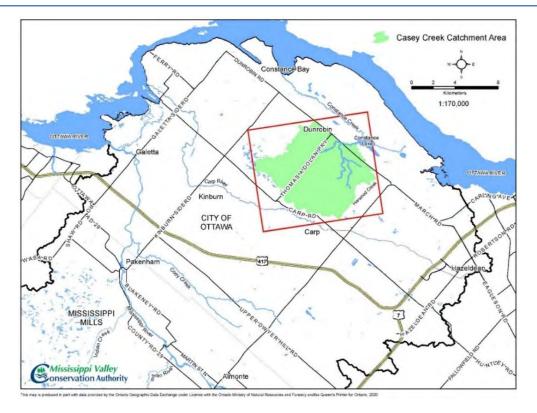


Figure 1: Casey Creek Watershed Location Plan

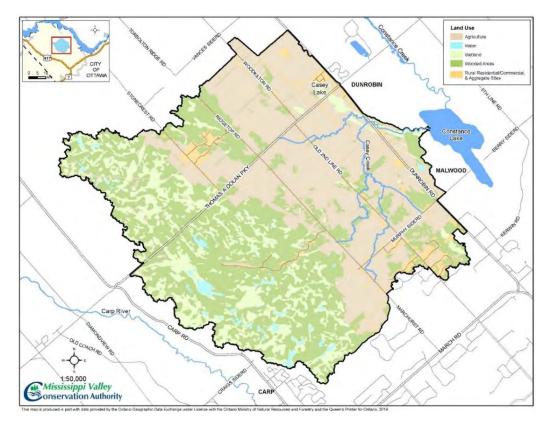


Figure 2: Casey Creek Watershed Land Use

The major road crossings within the watershed, from downstream to upstream, along the main channel of the Casey Creek, include:

- Dunrobin Road
- Abandoned railway line (now used as a trail)
- Old Second Line Road
- Murphy Side Road
- Marchurst Road

This study produced flood plain maps for the main branch of Casey Creek from Marchurst Road downstream to Constance Lake, the northwest tributary upstream to Thomas Dolan Parkway, the middle tributary upstream to Marchurst Road and the south tributary upstream to Murphy Side Road as shown on Figure 3.

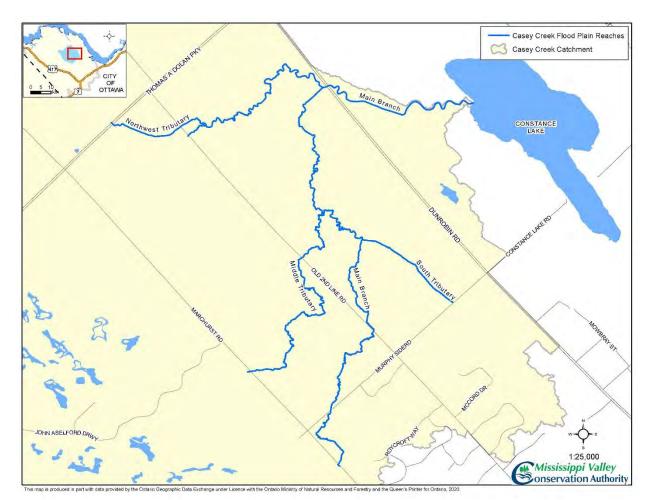


Figure 3: Casey Creek Study Reaches

1.3 Previous Studies

As stated above, no flood plain mapping has previously been produced for Casey Creek. However, previous hydrologic analyses have been produced as part of:

- Constance Creek Flood Plain Mapping Study (April 2017), Mississippi Valley Conservation Authority [5].
- Constance Creek Flood Plain Mapping Study (October 1994), M. E. Andrews and Associates [6].

1.4 Flood Plain Analysis and Stormwater Management Design

The main purpose of a flood plain mapping study is to delineate the area that would be physically flooded for the specified flood event as part of the assessment of flood risk. Stormwater management facilities/measures are constructed or implemented to address the impact of development and can include many more functions than simply quantity control, such as water quality and erosion control. Stormwater management design criteria and assumptions are generally set by the municipality when a development application is received under the *Planning Act*. Often watershed studies are completed to assess the potential impact of various stormwater management measures, implemented with development, on a watershed basis.

Therefore, the results from this flood plain mapping should be used to determine the location of features that should be located outside of the flood plain and in the assessment of floodproofing measures (e.g. as a boundary condition for hydraulic grade line calculations for the determination of minimum basement elevations) or flood risk assessments. The results of this study should be considered when reviewing new development proposals, but, are not meant to necessarily set or specify stormwater management criteria or targets.

2.0 Hydrology

2.1 Methodology

The objective of the hydrologic analysis conducted during this study was to estimate flows for the Casey Creek watershed for use in calculating Regulatory flood levels.

The selection of an appropriate method of hydrologic analysis is dependent upon several factors, these include:

- i. The purpose of the analysis this will dictate, in many cases, the type of appropriate procedures. For example, if a flow hydrograph produced by a historic rainstorm is required, then a modelling approach will be necessary.
- ii. Available flow data if records of flows are available within the study area of sufficient duration and quality, these can be used to directly estimate flows of various return periods.
- iii. Availability of regional flow relationships in the absence of actual flow data, it may be feasible to use regional relationships.

In this case, there are no actual flow records for Casey Creek and there are no flow gauges in nearby watersheds of similar size and land use characteristics. There is a flow gauge on the Carp River at Kinburn (southwest of Constance Lake), with 50 years of recorded data. However, the land use and watershed characteristics of the two watersheds are quite different. The Carp River has intense urban development

at the upstream end of the watershed (Kanata) as opposed to the more distributed agricultural and rural residential land use in the Casey Creek watershed. Also, the watershed drainage area of the Carp River, upstream of the flow gauge location, is over 4 times larger than Casey Creek. Since the watershed characteristics of the Carp River are quite different than the watershed characteristics of Casey Creek it is not believed that directly transposing the flows from a frequency analysis of the Carp River flow gauge data would result in representative flow values for Casey Creek.

Therefore, it was decided to estimate the flows using a hydrologic model and verify the results by comparison to results from regional equations. A wide variety of hydrologic models are available for use in estimating flows in Ontario. One commonly used model in Ontario flood plain mapping studies is known as HEC-HMS [7]. HEC-HMS can use single rainfall events (observed or synthetic) or continuous rainfall records to simulate the transformation of rainfall into surface runoff. Computed hydrographs can be routed through river channels or stormwater management ponds and reservoirs. Its main advantage is its use of a simple structure to allow a simple representation of a drainage area discretized into subcatchments. For this study, HEC-HMS version 4.7.1 was used.

2.2 Watershed Characteristics Affecting Runoff

The general characteristics of Casey Creek are described in Section 1.2. The hydrologic soil groups in the watershed are shown in Figure 4. As shown, the dominant hydrologic soil group in the drainage area is class B and D. Based on the dominant soil type and land use, the watershed area would be expected to produce moderate runoff volumes and peak flow rates.

It is anticipated that the period of highest runoff and flow rates on Casey Creek could be during the snowmelt and the highest flow months are probably March and April. High peak flows may also occur in the fall and/or summer, as a result of a severe rainfall event. Very low runoff rates tend to occur during the winter when the watershed is snow covered and the wetlands and watercourse are frozen. Based on the above, it is speculated that the higher flows may occur during a spring runoff condition resulting from rainfall and snowmelt or a severe summer or fall rainfall event. Both of these conditions were examined, as described in the later sections of this report.

2.3 Development of the HEC-HMS Model of Casey Creek

For Casey Creek, being a tributary of Constance Creek, a SWMHYMO [8] model was previously assembled as part of the hydrologic analysis for Constance Creek in the MVCA *Constance Creek Flood Plain Mapping Study*. For the original analysis, the total Casey Creek watershed was discretized into eight subcatchments. In the current study, the total watershed was divided into sixteen sub-catchments for the hydrologic analysis as shown in Figure 5. The sub-catchments were delineated in the current study to provide flow points at appropriate locations for the watercourse reaches where flood plain maps were produced.

The total watershed drainage area for Casey Creek used in the current study (55.16 km²) is only 0.15 % smaller in size, as compared to the drainage area used in the MVCA *Constance Creek Flood Plain Mapping Study*. This small difference in total drainage would not impact the hydrologic results.

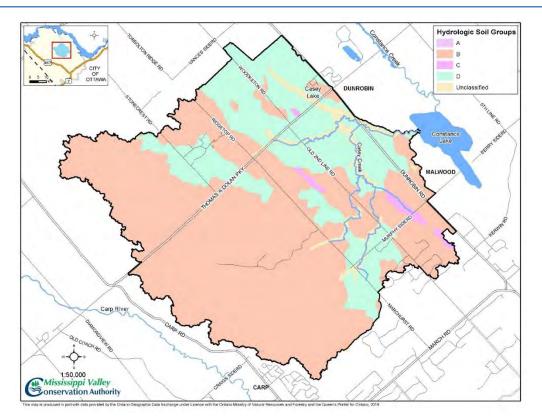


Figure 4: Casey Creek Hydrologic Soil Group

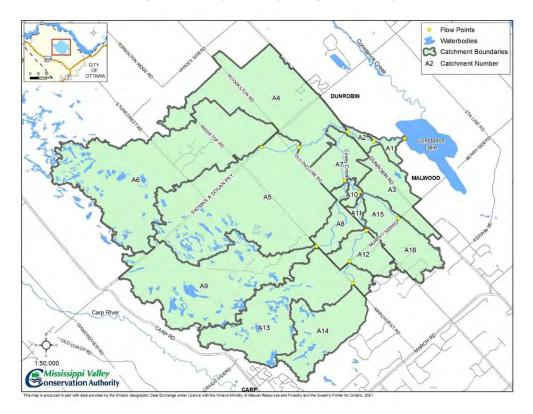


Figure 5: Casey Creek Sub-catchment Delineation

Figure 6 shows the HEC-HMS model schematic. The watershed representation consists of:

- Sixteen sub-catchment elements to estimate infiltration losses and transform excess precipitation into surface runoff.
- Eleven reach elements to model the effect of channel/flood plain routing from the downstream boundary of one sub-catchment to another.
- Twelve junction elements to combine hydrographs from sub-catchments and reaches and provide flow points for hydraulic modelling.

Each of these components requires certain physical data to describe the watershed. These were obtained from the following sources:

- Sub-catchment area, basin and channel slopes, watershed lengths and stream lengths were obtained from the Digital Elevation Model (DEM) developed by the City of Ottawa using LiDAR information acquired by the City (LiDAR Acquisition Report contained in Appendix A).
- Soil information was obtained from the *Soils of the Regional Municipality of Ottawa-Carleton* (Soil Report No. 58). This information was justified and the hydrologic soil group class was obtained from the Ontario Ministry of Agriculture, Food and Rural Affairs (OMAFRA) information database.
- Land use/vegetation cover was based on data sets obtained from the Land Information Ontario data warehouse.

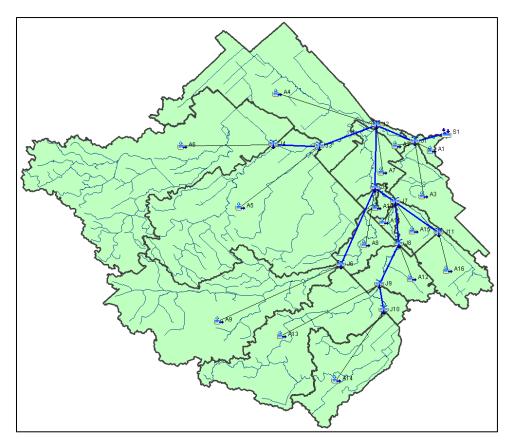


Figure 6: HEC-HMS Model Schematic

To assist in delineating the northwest boundary of sub-catchment A14, the stormwater management report for the estate residential subdivision [9] to the northwest was reviewed to ensure that the sub-catchment divide conformed to the boundary detailed in the report.

Based on all data and data sources noted, the appropriate model parameters, as shown in Table 1, were developed. Appendix B contains the calculations for the parameters shown in Table 1.

Table 1: HEC-HMS Parameters							
Sub-catchment ID	Area (ha)	CN Value (AMCII)	Time to Peak (Tp) (hrs)				
A1	31.4	58.9	1.5				
A2	28.2	75.7	0.6				
A3	208.3	73.0	2.0				
A4	667.4	80.5	3.2				
A5	1111.9	66.4	3.5				
A6	1068.1	63.6	3.5				
Α7	169.4	79.7	0.9				
A8	117.8	69.6	1.4				
A9	764.0	57.7	3.3				
A10	26.2	78.5	0.7				
A11	26.1	67.0	0.7				
A12	147.7	80.0	0.8				
A13	587.0	60.0	3.2				
A14	314.3	63.0	2.5				
A15	74.9	69.7	0.5				
A16	172.9	69.5	0.9				

Time to Peak Values

The Time to Peak (Tp) was calculated based on 0.67 times the Time of Concentration (Tc) for the subcatchments. To calculate the Tc value the Airport Formula and the Bransby-Williams Formula were considered (Appendix B). The Airport Formula and the Bransby-Williams equations are the most frequently used and applicable equations for rural basins in Ontario. The MTO Drainage Management Manual [10], for example, lists only these two equations. These methods were considered based on the drainage basin characteristics and representative results.

The Kirpich Formula was also considered as another alternative method for the calculation of Tc. It was developed for natural/rural drainage basins with well-defined channels and steep slopes (3%-10%). The maximum weighted watershed slope for the drainage basins in Casey Creek is 1.0% or less and the application of the formula did not result in representative values. The SCS Lag equations were also considered as another formula. It is applicable for drainage basins with CN values between 50 and 95 and

where overland flow dominates. The overland flow mechanism is a major flow length factor only for subcatchment A1 and a minor or absent factor for the remaining Casey Creek sub-catchments so, when applied to the drainage basins, the equation resulted in overestimated (long) Tc results. Therefore, the Airport Formula and the Bransby-Williams equations and processes were considered since they are the most applicable methods for Ontario and the sub-catchment characteristics.

The Airport Formula is applicable for sub-catchments with a Runoff Coefficient (C) value of less than 0.4. As shown in Table B2 (Appendix B) the C values for sub-catchments A1, A9, A13 and A14 are less than 0.4 and therefore the Airport Formula is applicable for those sub-catchments. The Bransby-Williams equation was used for the remaining sub-catchments.

Appendix B contains the calculations for Tc and Tp. Table B1, in Appendix B, shows the sub-catchment areas, 10% and 85% channel/overland flow lengths, percent slope and runoff coefficient. From these parameters, the total longest flow length (path) and weighted slope were calculated for use in the Tc equations. The slope calculations utilized the MTO 85/10 method which avoids the distorting effects of a steep upper portion of a sub-catchment or a highly irregular or convex/concave profile.

The Tc values as shown in Table B2 resulting from the applicable formula, based on the sub-catchment characteristics, were then multiplied by 0.67 to obtain the Tp value for input to the HEC-RAS model.

CN Values

The Curve Number (CN) values to calculate the rainfall-runoff response for the various land uses in the watershed were generated based on land use and soils, and a weighted average was calculated for each sub-catchment. The land uses and hydrologic features are spread throughout the watershed and there is not a high enough concentration in any one sub-catchment to require further specific delineation or separate consideration in the hydrologic model, to obtain representative results.

Table B3, in Appendix B, shows the overall CN values corresponding to the land use and hydrologic soil groups found in the Casey Creek watershed and the final CN value based on the detailed weighted CN calculations shown in Table B4.

The Soil Conservation Service of the U.S. Department of Agriculture originally developed the SCS Method to estimate runoff for agricultural applications. The runoff volume was based on the following equation:

 $Q = (P-Ia)^{2}/P+S-Ia$

Where: Q = runoff volume (mm)

- P = total depth of runoff (mm)
- S = Soil Storage (mm)
- la = initial abstraction (mm)

The CN is a measure of runoff potential and is related to soil storage (S) through the equation:

S = (25400/CN)-254

The Initial Abstraction (Ia) defines the amount of precipitation that must fall before surface excess results. Initial Abstraction is not the same as an initial interception or initial loss since changing the initial abstraction changes the infiltration response later in the storm [7]. In HEC-HMS, the value of Ia is calculated as 0.2 times the potential retention, which is determined from the curve number.

Precipitation Input

A previous study completed at MVCA for the Casey Creek watershed explored different design storm and snowmelt events to determine what precipitation input produces the highest peak flow response. For the rainfall hyetographs, a 12- and 24-hour SCS and 4-hour Chicago distribution, representing a long duration, high volume storm and a thunderstorm type storm, respectively, were used in the study. The appropriate rainfall durations and depths were obtained from the City of Ottawa *Sewer Design Guidelines* which contains Intensity-Duration-Frequency (IDF) curves derived from the rainfall recorded at the Ottawa International Airport between 1967 and 1997 analyzed using the Gumbel Distribution.

Synthetic spring rainfall-snowmelt hyetographs were developed based on the snowmelt + rainfall relationships developed by the Meteorological Service of Canada. They were derived from statistical analysis (Gumbel Extreme Value) of maximum annual snowmelt + rainfall volumes and were developed for 1- to 30-day periods based on observed precipitation and temperature. Annual volumes were estimated using a snowpack accumulation/depletion algorithm. Considering the watershed area of Casey Creek, a 1-, 3- and 5-day melt event was considered in developing the rainfall hyetographs.

The results of the study showed that the 12-hour SCS rainfall hyetograph produced the highest peak flow results in the Casey Creek watershed. For some of the more frequent storm events, the snowmelt + rainfall hyetographs resulted in slightly higher calculated flow values. Since the SCS rainfall distributions are, the standard distribution patterns and resulted in conservation results, the 12-hour SCS rainfall hyetograph simulation was recommended for use in the hydraulic flood plain mapping analysis.

Table 2 provides the total rainfall depths for the 12-hour design storm. These rainfall depths were derived from Table 5.1 in the City of Ottawa *Sewer Design Guidelines* and the SCS Type II rainfall distributions from the MTO *Drainage Management Manual* (Design Chart 1.05) were employed.

Table 2: Rainfall Depths (mm)					
Return Period (yrs)	12-hour				
2	43.2				
5	57.8				
10	67.2				
25	79.2				
50	87.6				
100	96.0				

2.4 Verification of Model Performance

In common with all existing hydrologic models, HEC-HMS is a simplified representation of the real world. Empirical equations and established guidelines are available to estimate the input parameters for the model. However, the best approach in assuring the model gives realistic flow estimates is to calibrate the model with observed data. This would generally consist of carrying out a series of simulations and comparing the results to observed flows. If necessary, the input parameters of the model would be adjusted to match the observations. To complete a full calibration exercise two main pieces of information are required; flow records of high flow events and records of the rainfall and/or rainfall/snowmelt that initiated the flow events.

There are no actual flow records on Casey Creek. Therefore, to verify the results from the HEC-HMS model other methods were used to calculate flows, for comparison purposes.

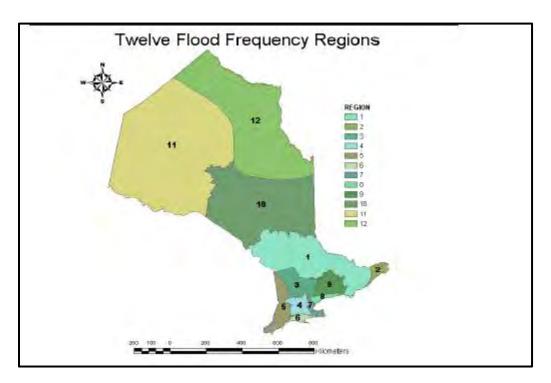
2.4.1 Ontario Flow Assessment Tool

The Ontario Flow Assessment Tool III (OFAT) developed by the Ontario Ministry of Natural Resources and Forestry [11] was employed. OFAT is an online, spatially based application to automate a series of labourintensive technical hydrology tasks and view select hydrology information such as low flow and flood flow statistics. To provide flood flow estimates OFAT employs two regional hydrology models:

- 1. Index Flood with Expected Probability Adjustments (Moin and Shaw 1985)
- 2. Primary Multiple Regression Method (Moin and Shaw 1985)

Index Flood Method

The regional frequency analysis identified twelve regions in Ontario with relatively homogenous flood frequency characteristics. A total of 247 hydrometric stations with a record length of 10 or more years were used for the study. These stations have either natural or minimal regulation inflow. The data was fitted to the Three Parameter Log-Normal Distribution and the flow versus drainage area relationship was developed. The general form of the equation for index flood is shown below:


 $Q_2 = CA^n$ Where $Q_2 = 2$ -year flow (m³/s) A = drainage area (km²) C = constant derived for each region

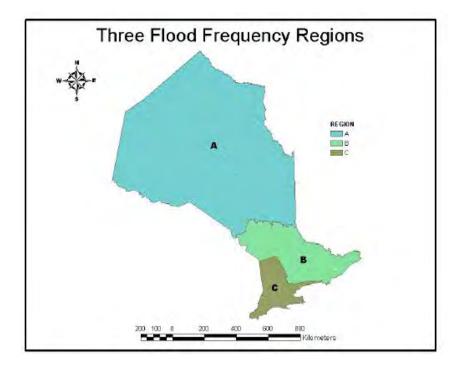
n = exponent (slope) derived for each region

As shown in Figure 7, Casey Creek is within Region 1. For Region 1 the range of drainage areas for use of the regression equation is between 0.11 km² and 9,270 km², therefore it is applicable for the Casey Creek watershed. The applicable coefficients (Area < 60 km²) are:

C = 0.22

N = 1.0

Figure 7: Twelve Flood Frequency Regions


Similarly, for each region, a curve showing the ratio of flows of different return periods to the index flood was derived. This can be used to estimate the flow for any required return period once the index flood has been calculated. Again, for Region 1 the applicable ratios are:

 $Q_{1.25}/Q_2 - 0.95$ $Q_2/Q_2 - 1.0$ $Q_5/Q_2 - 1.24$ $Q_{10}/Q_2 - 1.43$ $Q_{20}/Q_2 - 1.62$ $Q_{50}/Q_2 - 1.86$ $Q_{100}/Q_2 - 2.04$ $Q_{200}/Q_2 - 2.23$ $Q_{500}/Q_2 - 2.48$

Multiple Regression Method

As in the Index Flood Method, the variable used for single station analysis, for the Multiple Regression Method, is annual peak instantaneous flow. Gauging stations in Ontario were classified according to the degree of regulation. Regulated gauging stations were included in the 50- and 100-year return periods with the premise that regulation has less impact on large events.

The main feature of this method is the delineation of homogenous regions within Ontario using standardized residuals from the 100-year return level. Three homogenous regions as shown in Figure 8 were found by grouping the residuals of similar magnitude and sign.

Figure 8: Three Flood Frequency Regions (OFAT)

Regression equations were developed for each of the three homogeneous regions. The parameters significant in the regression equations in the order of importance are:

- DA Drainage Area (km²)
- BFI Base Flow Index (dimensionless)
- SLP Slope of the Main Channel (m/km)
- ACLS Area Controlled by Lake (water) and Wetlands (%)
- MAR Mean Annual Runoff (mm)
- MAP Mean Annual Precipitation (mm)
- SF Shape Factor (dimensionless)

The regression equation is:

 $Log(QT) = a_0 + a_1 Log(DA) + a_2(BFI)^{1/2} + a_3(SLP)^{1/3} + a_4(ACLS)^{1/2} + a^5(SLP) + a_6 Log(MAR) + a_7(MAR) + a_8 Log(ACLS+1) + a_9(MAP) + a_{10}(SF) + a_{10}(SF)$

With the regression coefficients developed for each region and an all Ontario category. Casey Creek is within Region B and applicable coefficients are shown below.

Region B							
Flow m3/sec	a0	a1	a3	a4	a10	SE	R2
Q2	0.2143	0.7464	-0.2172	-0.0194	-0.0077	0.14	0.91
Q5	0.2746	0.7443	-0.1961	-0.0198		0.14	0.89
Q10	0.3795	0.7217	-0.1799	-0.0202		0.15	0.87
Q20	0.2311	0.7461		-0.0197	-0.0081	0.15	0.87
Q50	0.3659	0.6989		-0.0275		0.15	0.85
Q100	0.4471	0.6839		-0.0276		0.16	0.83

All Ontario							
Flow m3/sec	a0	a1	a3	a4	a7	SE	R2
Q2	-1.5689	0.8509	0.1635	-0.0339	0.0013	0.22	0.95
Q5	-1.3629	0.8370	0.2023	-0.0341	0.0012	0.21	0.85
Q10	-1.2251	0.8261	0.2154	-0.0341	0.0012	0.21	0.84
Q20	-1.1478	0.8205	0.2353	-0.0333	0.0012	0.21	0.84
Q50	-0.8744	0.8006	0.2315	-0.0359	9.7E-4	0.21	0.84
Q100	-0.7947	0.7950	0.2424	-0.0357	9.3E-4	0.22	0.83

The data used for watershed delineation in OFAT III is based on data in the Water Resources Information Programs' (WRIP) Ontario Integrated Hydrology Data Packages. The Ontario Integrated Hydrology Data packages are currently stored and distributed through Land Information Ontario (LIO) (<u>www.lio.gov.on.ca</u>).

Specific input data includes:

- Watershed Shape factor the square of the length of the Main Channel divided by the drainage area.
- Watershed Mean Elevation calculated by averaging the values from the DEM contained in the Integrated Hydrology Package, within the watershed.
- Watershed Mean Slope calculated by averaging the mean slope percent grid within the watershed.
- Length of the Main Channel measured from a user-defined pour point and is obtained by a query to an Upstream Flow Length grid at the pour point.
- Maximum Channel Elevation the elevation value from the DEM contained in the Integrated Hydrology Package, at the most upstream point along the main flow path.
- Minimum Channel Elevation the elevation value from the DEM contained in the Integrated Hydrology Package, at the pour point.
- Slope of the Main Channel computed using the Upstream Flow Length as determined in Length of the Main Channel together with elevation values from the pour point and the most upstream point along the main flow path.
- Areas of Lakes and Wetlands the area within the watershed covered by a lake, major river or wetland is determined by summarizing a data layer created for OFAT III called WaterBodyArea Raster.
- Mean Annual Runoff the Mean Annual Runoff Surface is a 1 km resolution raster data set that represents the mean annual runoff in millimetres at a particular location.
- Base Flow Index the Base Flow Index Surface is a 1 km resolution raster data set that represents the portion of the flow in a stream derived from soil moisture or groundwater (baseflow).

2.4.2 Comparison of Flows and Verification

Table 3 shows a comparison of peak flows calculated by the HEC-HMS model of Casey Creek at the watershed outlet (confluence with Constance Lake, see location S1 on Figure 6) with the peak flows obtained by the Index Flood Method and the Multiple Regression Method. It should be noted that the sub-catchment drainage areas calculated and used by the OFAT tool (Index Flood Method and the Multiple Regression Method) were only a maximum of 3% different when compared to the areas delineated in this current study and therefore this variation would not impact the flow comparison presented in the tables.

Overall, the flows generated from the HEC-HMS model correspond well with the peak flows generated by the empirical Index Flood and Multiple Regression Methods. The higher frequency HEC-HMS peak flows are slightly lower than the Index Flood and Multiple Regression peak flows and the lower frequency peak flows are slightly higher, but overall the results are not systematically biased (consistently underestimated or overestimated).

Although the peak flows calculated employing the HEC-HMS hydrologic model may be slightly overestimated for the 100-year return period when compared to other methods, the results are conservative. It can therefore be concluded that the HEC-HMS model representation of Casey Creek, given the limitations of the data, is sufficiently accurate for purposes of estimating flows for the Regulatory flood event.

Table 3: Peak Flows at the Watershed Outlet) (m3/s)						
		OFAT				
Return Period (yrs)	HEC-HMS	Index Flood	Multiple			
		Method	Regression			
2	3.94	12.3	10.0			
5	10.4	15.1	15.6			
10	17.8	17.6	19.6			
20		20.4	23.9			
25	29.5	-	-			
50	39.0	24.3	28.2			
100	49.4	27.4	32.5			

2.5 Flows for Flood Plain Delineation

As detailed in the *Technical Guide River and Stream Systems: Flood Hazard Limit* [3], the calculation of flood lines should be based on future development conditions with a planning horizon preferably extending 20 years into the future. The Casey Creek watershed is outside of the present City of Ottawa urban boundary as shown in the Official Plan. There are some Village Residential zones (e.g. Dunrobin) within the watershed, but no substantial development, that would significantly change the hydrologic model parameters, on a watershed basis, would be assumed to occur within the prescribed planning horizon. Since the HEC-HMS model verification process, detailed in Section 2.5 of this report, resulted in

generally conservative flow results (i.e. higher than other methods), the analysis documented in Table 3 will be considered as also accounting for any increase in flows due to development within the 20-year planning time frame horizon.

The peak flows calculated as part of this study are not meant to necessarily set specific targets for stormwater management or to suggest that stormwater management is not required (and it is expected that stormwater management will be implemented when development occurs). Stormwater management facilities address many more functions than to simply control the quantity, such as water quality and erosion control and are a required element to address the impacts of development. Section 1.4 describes the relationship between flood plain analysis and stormwater management design and how the result of this study should be used.

Also, as shown in Figure B-1 in the MNRF Technical Guide, the MVCA watershed jurisdiction is within Zone 2 and therefore the Regulatory flood hazard criterion is the 100-year flood. Ontario Regulation 153/06 Mississippi Valley Conservation Authority: Regulation of Development, Interference with Wetlands and Alterations to Shorelines and Watercourses also specifies that the applicable flood event standard to be used and, in the area of jurisdiction of the Mississippi Valley Conservation Authority, is the 100-year Flood Event Standard. Therefore, the 100-year event was employed to delineate the Regulatory flood line for Casey Creek. To apply a different standard would require prior approval from the Minister and a revision to Ontario Regulation 153/06.

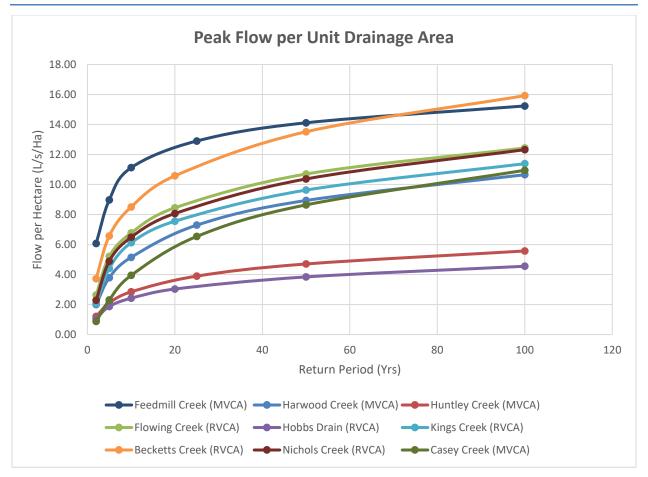
2.5.1 Comparison to Previous Studies

As detailed in Section 1.3, previous studies that include hydrologic analyses for Casey Creek are:

- Constance Creek Flood Plain Mapping Study, Mississippi Valley Conservation Authority [5].
- Constance Creek Flood Plain Mapping Study, M. E. Andrews and Associates [6].

Table 4, below, shows a comparison of calculated flow values, at the downstream end of the Casey Creek watershed, calculated in the previous studies and the present study. All calculated flows shown in Table 4 employed the 12-hour SCS rainfall hyetograph. The M. E. Andrews 1994 study only reviewed the 100-year flood event, so there are no additional return period flows documented in that study.

Table 4: Flow Comparison at the Downstream End of the Casey Creek Watershed (m ³ /s)							
Return Period (yrs)	Present Study	M. E. Andrews and Associates Study	MVCA Constance Creek Study				
5	10.4	-	15.8				
25	29.5	-	30.5				
100	49.4	27.3	44.6				


The 2017 *Constance Creek Flood Plain Mapping Study* focused specifically on Constance Creek and Casey Creek, as a tributary of Constance Creek/Lake (Tributary B in that study). The peak flows obtained in this

study correspond very well with the peak flows calculated in the present study. The 100-year peak flow calculated in the 1994 M. E. Andrews study is approximately 40% lower than the present study. The sub-catchment delineation in the 1994 M. E. Andrews study is coarser and the drainage area slightly different in size, but, there are two main reasons that could result in calculation differences:

- In the 1994 M. E. Andrews study, the Modified Williams equation was used to calculate Tp and Recession Constant (K) values for use in the OTTHYMO hydrologic model. This empirical relationship was developed based on the southern United States watershed and may not be applicable in other areas. The Williams formulas are now not recommended for use in Ontario and therefore comparison of flows calculated employing the formula may also not be valid.
- 2. The CN values shown in Table 1 are higher than those documented in the 1994 M. E. Andrews study. This is mainly due to the fact that the 1994 study designates the soils in the upstream portion of the watershed as hydrologic soil group A, whereas the Ontario Ministry of Agriculture, Food and Rural Affairs classifies these soils as hydrologic soil group B. Since there is not a specific source for the soil information documented in the 1994 M. E. Andrews study, the OMAFRA data was employed in this present study.

The flows calculated in the present study better represent the watershed hydrology and thus are more representative for the Casey Creek watershed.

As a final check of the calculated flow values, Figure 9 shows a comparison of specific flows (L/s/ha) calculated as part of other flood plain mapping studies completed by the MVCA and the Rideau Valley Conservation Authority (RVCA). The total watershed area of the watercourses included are between 10 and 95 km² and are similar in land use (i.e. generally rural). The exception is Feedmill Creek which is partly developed with ongoing development and thus has a higher imperviousness than the other watersheds. As expected the calculated flows are the highest for Feedmill Creek. As shown in Figure 9 the calculated flow values for Casey Creek are in the middle range of the watersheds reviewed, adding further confidence in the hydrologic modelling.

Figure 9: Peak Flow per Unit Area

2.6 Conclusions and Recommendations

The following summarizes the conclusions and recommendations of the hydrologic studies completed in connection with the delineation of the Regulatory flood levels for Casey Creek.

- I. It was concluded that a hydrologic modelling approach was appropriate to estimate design flows for the study area due to the lack of complete long-term flow data for the watershed.
- II. It was concluded that the HEC-HMS model was suitable for use in simulating design flows and hydrographs for the watershed based on the results of comparison with return period flows calculated using Regional Equations.
- III. It is required that the Regulatory flood levels for Casey Creek be calculated based on flows from the 100-year flood event.
- IV. The flow values calculated using the 12-hour SCS rainfall hyetograph and rainfall depth as detailed in Section 2.5 (Table 3) were recommended for use in the hydraulic analysis.

3.0 Hydraulic Analysis

3.1 Methodology

The objective of the hydraulic analysis conducted during this study was to estimate the flood levels for the 2, 5, 10, 25, 50, and 100-year (Regulatory event) for the study reach as shown in Appendix C. As shown, the study reaches include the main branch of Casey Creek from its outlet at Constance Lake upstream to Marchurst Road and the northwest tributary from the confluence with the main branch upstream to Thomas Dolan Parkway, the middle tributary from the confluence with the main branch upstream to Marchurst Road and the south tributary from the confluence with the main branch upstream to Marchurst Road and the south tributary from the confluence with the main branch upstream to Marchurst Road and the south tributary from the confluence with the main branch upstream to Marchurst Road (see Figure 3). It should be noted that the flood plain mapping, on the main branch of Casey Creek, was not produced upstream of Marchurst Road since grading, topographic and channel alteration works have been completed as part of the development of an estate residential subdivision, subsequent to the collection of the Lidar information used to develop the Digital Elevation Model (DEM) used as input for this study. Therefore, the topographic information for input to the hydraulic model and base mapping to delineate the flood line is not available. The flood plain analysis and delineation should be extended further upstream for this reach when new updated topographic information is available.

The HEC-RAS (version 5.0.7) hydraulic backwater model developed by the US Army Corps of Engineers, simulated in steady flow analysis with mixed flow regime, was utilized to establish flood elevations in Casey Creek using flows corresponding to the applicable return periods. There is no history of ice jams causing flooding issues on Casey Creek, so any potential for ice jam flooding has not been included in the hydraulic analysis.

3.2 Input Parameters

Flows

Table 5 shows the flow values employed in the HEC-RAS analysis based on cross-section locations shown in the Exhibits in Appendix C. The flows shown in Table 5 are based on the hydrologic analysis employing the 12-hour SCS rainfall hydrograph as detailed in Section 2.6 of this report. The flows were generally only changed at the flow points shown in Figure 5.

Cross-Sections

The LiDAR-derived terrain provided by the City of Ottawa was used to produce a digital elevation model (DEM). The topographic data for each cross-section (channel and flood plain) were extracted from the DEM using the GeoHECRAS utility program. The cross-sections were oriented left to right looking downstream.

The LiDAR returns water surface elevations and does not return the underlying channel bed elevation. The cross-sections as derived from the DEM were used and a "low flow" channel was not added. This is

	Table 5: Flows Values Used in HEC-RAS Analysis (m3/s)										
	HEC-RAS Reach Name										
	Main DS	S-1-DS-0	Main DS-1	Main DS-2		Main		Trib	01	Trib 2	Trib 3
Return Period (yrs)	Cross- Section 1 to 1160 ^a	Cross- Section 1509 to 2091ª	Cross- Section 2 to 1849 ^a	Cross- Section 3 to 784ª	Cross- Section 4 to 1296 ^a	Cross- Section 1313 to 2714 ^a	Cross- Section 2748 to 3689ª	Cross- Section 7 to 2377 ^a	Cross- Section 2546 to 3577 ^a	Cross- Section 6 to 3418 ^a	Cross- Section 5 to 1228 ^a
2	3.94	3.58	1.49	1.28	1.16	0.099	0.069	0.625	0.203	0.004	0.177
5	10.4	9.72	4.88	4.11	2.91	0.84	0.421	3.17	1.25	0.400	0.905
10	17.7	16.7	7.94	6.63	4.28	1.74	0.845	5.89	2.41	0.927	1.65
25	29.5	27.8	12.6	10.4	6.24	3.39	1.58	10.4	4.40	1.95	2.88
50	38.9	36.8	16.2	13.4	7.70	4.83	2.21	14.1	6.07	2.89	3.89
100	49.4	46.8	20.1	16.6	9.21	6.47	2.92	18.2	8.95	3.98	4.99

Note ^a: HEC-RAS Cross-Section

a conservative assumption and during field visits, it was noted that the channel of Casey Creek had a continuous flow and thus, during a storm event, the full capacity of the low flow channel would not be available to convey flow. Also, for the study reach the capacity of the low flow channel would be minimal in comparison to the wide flood plain area.

Figures showing the study reach and cross-section locations can be found in Appendix C. Cross-section and profile plots are contained in Appendix D.

Watercourse Crossings

Watercourse crossings were field surveyed using GPS equipment to establish benchmarks where other vertical control was not available. Structure geometry, invert elevations, size, condition, materials, and other features were noted, to be able to guide other input parameters (e.g. Manning's n values). The top of road profiles was determined from information extracted from the DEM. The length of the crossing was derived by measurements from the aerial photography and the expansion and contraction coefficients employed at all crossing were 0.3 and 0.5, respectively. All crossings, except for the Dunrobin Road crossing, were modelled in the HEC-RAS program using the culvert routine. The Dunrobin Road Crossing was modelled employing the standard step (energy) bridge routine. The structure database is found in Appendix E.

Any pedestrian/trail/ low level farm crossings of Casey Creek, within the study reach, were not included in the HEC-RAS backwater model. These crossings are generally clear spans of the low flow channel and the trails/walkways/roads on both sides leading to the crossings are at grade in the overbank flood plain area. As such, the crossings would have minimal impact on the channel and flood plain conveyance (i.e. minimal obstruction to flow).

Manning's n Values

Channel and overbank roughness values were assigned on a reach-by-reach basis, with values for Manning's n determined from the vegetation and surface features visible in the aerial photography and confirmed by on-site reconnaissance and observations during the field survey of watercourse crossings.

The Natural Stream category in Table 5-6 in *Open-Channel Hydraulics* [12] was consulted to determine appropriate Manning's n values. A Manning's n value of 0.032 was used for the channel in all simulations. For the flood plain (left and right overbanks), the flood plain vegetation is fairly uniform for most of the study reaches of Casey Creek consisting of pasture or crop field with some isolated areas of light brush. Therefore, a Manning's n value of 0.045 was used for most of the flood plain areas. In a few short reaches, this value was increased to 0.06 to represent more dense and mature vegetation. Downstream of Dunrobin Road, the vegetation becomes heavier. Therefore, a Manning's n value of 0.1, as noted in Table 5-6 [12], corresponds to a flood plain with medium to dense brush in summer was used for that reach in the HEC-RAS model. At the watercourse crossings, for the concrete culverts a Manning's n value of 0.024.

Boundary Conditions

In accordance with the *Technical Guide River and Stream Systems: Flood Hazard Limit* (OMNR 2002) the flood standard of any tributary (Casey Creek) flowing into a larger watercourse (Constance Lake/Creek) is based the greater of:

- The backwater of the larger watercourse during the Regulatory (100-year) flood, represented by the mean annual flood in the tributary watercourse calculated assuming the Regulatory flood level in the larger watercourse; or
- The Regulatory (100-year) flood level in tributary watercourse calculated assuming an average (mean annual) flood level in the larger watercourse.

Since the watershed area of the Constance Creek is three times larger than the watershed area of Casey Creek, it is reasonable to assume that the high-water levels at the confluence of these two watercourses will be generated by two independent flood events and the above noted procedure to calculate the flood standard is applicable.

From the report *Constance Creek Flood Plain Mapping Study* (April 2017), Table 6 below shows the applicable water levels, for the various return period flood events for Constance Lake. Also, in accordance with the *Technical Guide River and Stream Systems: Flood Hazard Limit* (OMNR 2002), where the maximum effective fetch length of a lake is less than 3 km, which is the case for Constance Lake, the lake can be treated as an integral part of the river system and no specific calculation or addition for wind setup and wave run up is required. Thus, the flood standard and elevation, for the lake, are the same as applied for the river system.

Table 6: Constance Lake Flood Elevations					
Return Period (yrs)	Water Elevation (m)				
2	60.20				
5	60.32				
10	60.39				
25	60.48				
50	60.60				
100	60.92				

To determine the Regulatory (100-year) flood elevations for Casey Creek to be used for Regulatory flood plain delineation and the implementation of regulations under Section 28 of the *Conservation Authorities Act*, the following scenarios were reviewed:

- 1) The mean annual flood in Casey Creek, represented by the 2-year peak flows, with the Constance Lake 100-year water level (60.9 m) as the downstream boundary condition; and
- 2) The 100-year peak flow in Casey Creek, with the downstream starting water level set at the 2-year water level for Constance Lake as a surrogate of the average (mean annual) flood level.

3.3 Flood Plain Elevations

Table 7 shows the calculated 100-year water levels for the two above noted scenarios. As shown in Table 7, 100-year peak flows produced by the Casey Creek watershed combined with the 2-year lake water levels produced the most conservative (highest) calculated water elevations. Therefore, the 100-year flow produced by the Casey Creek watershed is governing for determining the Regulatory (100-year) flood elevation and delineating the Regulatory flood plain and that flow, utilizing a 2-year downstream starting water elevation, was used. The 2-year starting water level downstream boundary condition was also used for all return period hydraulic simulations.

Table 7: Casey Creek Calculated 100-year Water Elevations							
Cross-Section Number	2-year Flow in Casey Creek with 100- year Water Level in Constance Lake (m)	100-year Flow in Casey Creek with the 2-year Water Level in Constance Lake (m)					
1	60.90	60.23					
164	60.90	60.45					
460	60.90	60.72					
737	60.90	60.79					
1160	60.90	61.04					
1509	60.94	61.65					
2062	61.04	62.22					

3.3.1 Sensitivity Analysis

There is no measured water level information for Casey Creek, within the study reach, for hydraulic calibration/verification. Therefore, sensitivity analyses of various input parameters were completed to determine the impact of the calculated 100-year water elevations on Casey Creek.

3.3.1.1 Design Flows

A sensitivity analysis was completed by increasing the calculated 100-year flow by 20 percent. This sensitivity analysis indicates the potential impact of changes in flood flows and flood levels that might result from gradual trends such as climate variability or change. Table 8 shows the 100-year peak water levels and flows at four locations upstream of road crossings along the main branch of Casey Creek.

As shown in Table 8, the maximum increase in calculated 100-year water elevation as a result of potential flow increases is 0.3 m or less. The exception is upstream of the abandoned railway line crossing (now utilized as a trail). The crossing has a fairly small opening (3.0 m span by 1.0 m rise) and there is over 4.5 m of cover (fill) above the obvert of the culvert to the top of the minimum top of the road/trail. This crossing orientation does cause a substantial increase in the upstream water elevation. With the calculated 100-year flows, water elevations upstream of the crossing increased more than 0.3 m as compared to the downstream water elevations. Increasing the flow value only increases the rise in water

elevation and the increase in flow results in the trail being overtopped, which would also impact the calculated water elevation.

This potential increase in calculated water elevation, assuming the 20% increase in flow, would only potentially result in a substantial difference in the geographic extent of the Regulatory flood line delineated on the flood plain maps in one isolated area (upstream of the abandoned railway line).

The Province of Ontario determines the flood standard to be used to define Regulatory flood lines and the Ministry of Natural Resources and Forestry (MNRF) has defined the 100-year flood for the MVCA watershed. To employ a different flood standard than the 100-year, as the Regulatory flood, would require prior approval of the Minister of Natural Resources and Forestry and a revision to the MVCA regulation.

Table 8: 100-year Water Elevation Results - Increased Flow Values					
			Calculated Water Level (m)		
Location	HEC-RAS Reach	Cross-section	Standard Flow Value ¹	Standard Flow Value + 20%	
Dunrobin Road	Main DS-1	2	63.36	63.43	
Abandoned Railway	Main DS-1	978	67.93	68.23	
Second Line Road	Main	1411	85.50	85.60	
Murphy Side Road	Main	2868	91.45	91.46	

Note : 1 - Flow values as shown in Table 7

3.3.1.2 Manning's n Value

The Manning's n values for the channel and flood plain which represent the "roughness" or resistance the flow encounters were increased by a factor of 1.5 and 2.0 and decreased by a factor of 0.5 from the values documented in Section 3.2. Table 9 shows the peak 100-year water levels at various locations upstream of road crossings within the watershed.

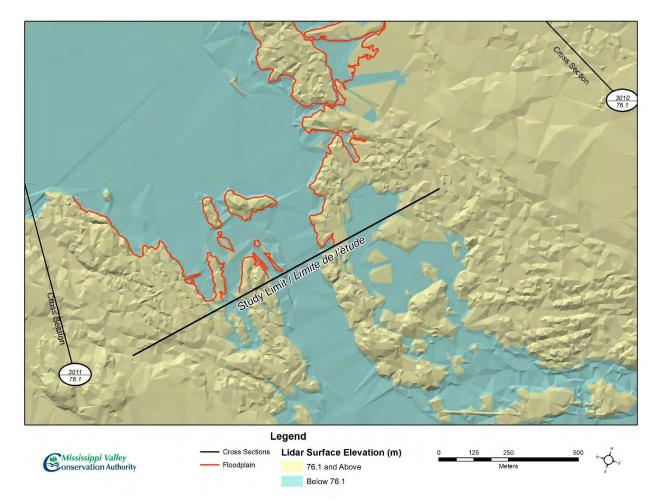
As shown in Table 9, the maximum increase in calculated water elevation, considering the increased Manning's n values, is generally less than 0.01 m.

This potential increase in calculated water elevation would not result in a substantial difference in the geographic extent of the Regulatory flood line delineated on the flood plain maps since where the greatest potential increase calculated water elevation occurs is also a reach within a relatively confined valley section.

Water elevations for all return period events are shown in Appendix F.

Table 9: 100-year Water Elevation Results- Varied Manning's n Values						
			Calculated Water Level (m)			
Location	HEC-RAS Reach	Cross- section	Standard Manning's n Values ¹	Standard Manning's n Values x 0.5	Standard Manning's n Values x 1.5	Standard Manning's n Values x 2.0
Dunrobin Road	Main DS-1	2	63.	63.36	63.36	63.37
Abandoned Railway	Main DS-1	977	67.93	67.93	67.93	67.93
Second Line Road	Main	1408	85.50	85.50	85.50	85.51
Murphy Side Road	Main	2864	91.45	91.45	91.45	91.45

Note: 1 - Values as documented in Section 3.2


3.3.1.3 Boundary Condition

To test the sensitivity of the boundary condition selected in the study and the conclusion that the highwater levels at the confluence of the two watercourses will be generated by two independent flood events, the impact of scenario with 100-year water level for Constance Lake as a surrogate of the average (mean annual) flood level in combination with 100-year peak flow on Casey Creek was analyzed. As shown in Table 10, there is no difference in calculated water elevations at cross-sections upstream of 1160.

Table 10: 100-year Water Elevation Results - 100-year Flow on Casey Creek with the100-year Water Level on Constance Lake				
Cross-Section Number	100-year Flow in Casey Creek with the 2-year Water Level in Constance Lake (m)	100-year Flow on Casey Creek with the 100-year Water Leve on Constance Lake (m)		
1	60.23	60.90		
164	60.45	60.90		
460	60.72	60.92		
737	60.79	60.96		
1160	61.04	61.08		
1509	61.65	61.65		
2062	62.22	62.22		

4.0 Regulatory Flood Plain Delineation

The Regulatory (100-year) flood plain elevations were used to plot the Regulatory flood lines using ArcGIS. The Regulatory flood levels at each cross section were used to produce a Triangulated Irregular Network (TIN) surface in ArcGIS. The TIN surface is a plane between each cross section based on the Regulatory flood plain elevations as shown in Figure 10. The intersection of the TIN and the LiDAR-derived terrain determines the location of the Regulatory flood line.

Figure 10: Flood Line Delineation

After the initial plotting of the Regulatory flood plain line, it was reviewed by the engineer and any revisions to define spill areas etc. were made. The only reaches that required revisions or close reexamination were the locations of abrupt bends in the Casey Creek channel. Potential road overtopping was also reviewed to ensure the upstream calculated water elevation was used to determine when overtopping occurred. As well, some generalization techniques were employed to improve the visualization of the flood plain line such as smoothing and simplification. Other quality assurance measures were incorporated per recommendations from engineers including ensuring the flood plain line is continuous along the river reaches.

The flood plain maps were produced, on 10 individual map sheets at a scale of 1:2000 showing an overall contour interval of a 0.5 m contour and employing 2017 aerial photography.

As documented in the *Final Report LiDAR for the City of Ottawa Mapping Program* prepared by Airborne Imaging (Appendix A), the accuracy of point cloud on a flat ground surface without vegetation (Fundamental Vertical Accuracy) was found to be 13.0 cm. The Supplemental Vertical accuracy

considering crop/pasture, forested/wooded and thicket/shrubland cover was 25.5 cm and the Consolidated Vertical Accuracy, merging all land cover types with open flat surfaces, was found to be 30.3 cm.

The document *Data Capture Specifications for Hydrographic Features Version 1.3* prepared by the Ministry of Natural Resources and Forestry [13] lists the vertical scale and accuracy criteria based on map scale as shown in table 11.

Table 11: Map Scale				
Absolute	Absolute Spot Elevation		Map Scale	
0.5 m	0.3 m	1.0 m	1:2000	
1.25 m	2.0 m	2.0 m	1:5000	

Therefore, at a scale of mapping for Casey Creek of 1:2000, the accuracy of the LiDAR data and the DEM derived from the data is suitable for the production of flood plain delineation and mapping.

MVCA staff also completed a field survey at 21 locations, shown in Figure 11, to check the surveyed elevations compared to the elevations derived from the Digital Elevation Model (DEM) used in the analysis. As shown in Table 12, most of the surveyed spot elevations are within a 10 cm or less variance with only one location being just below the 30 cm tolerance.

4.1 Flood Prone Areas

The flood plain maps (under separate cover) show a fairly narrow flood plain, in the upper reaches of the Casey Creek study reaches. Upstream of the abandoned railway crossing on the main and northwest tributary reaches, the backwater from the relatively small culvert and high fill does result in wider flood plain areas. Upstream of Dunrobin Road where the flood plain areas are flat there is a more extensive flood plain, as the flood plains from the Main reach and Tributary 1 merge.

Spills

- On Map Sheet 4 there are four spill locations across existing agricultural fields.
- Map Sheet 6 shows another spill area to the east of the Main reach. This spill is south of the intersection of Dunrobin Road and Thomas A Dolan Parkway.
- The flood plain on Map Sheet 8 shows a spill location, to the north.

Figure 11: Topographic Map Check Points

Although these spill areas are not anticipated to result in major flood risk, determining the extent and specific direction of flood waters is beyond the scope of this study. The hydraulic analysis did not include any reduction in flow values as a result of these spills. So, if they are eliminated in the future, to confine the flood plain, the hydraulic analysis is still valid for the watercourse.

Existing Development

There is one house that is partially within the Regulatory (100-year) flood plain at 2535 Dunrobin Road.

Existing Roads

The only road that crosses Casey Creek that is flooded or overtopped during the Regulatory (100-year) flood event is the Second Line Road crossing on the Main branch (Map Sheet 3) by a maximum depth of approximately 0.1 m. There are three properties (2554 Dunrobin, 2565 Dunrobin, and 2535 Dunrobin) that do not have safe access as their driveways will be more than 0.3m below the 100-year flood level (Map Sheet 9).

Table 12: Topographic Map Check Results				
Spot Elevation Point	Survey Elevation (m)	DEM Elevation (m)	Difference (m)	
1	100.30	100.33	-0.02	
2	103.91	103.94	-0.03	
3	101.80	101.84	-0.04	
4	98.50	98.60	-0.10	
5	93.11	93.19	-0.08	
6	94.68	94.74	-0.06	
7	91.42	91.52	-0.11	
8	96.95	96.66	0.29	
9	78.40	78.33	0.07	
10	63.94	63.97	-0.03	
11	62.25	62.31	-0.07	
12	62.91	62.95	-0.04	
13	65.39	65.45	-0.07	
14	69.28	69.28	-0.00	
15	75.22	75.16	0.06	
16	69.49	69.49	-0.00	
17	68.46	68.51	-0.04	
18	74.52	74.50	0.02	
19	77.10	77.04	0.06	
20	86.15	86.15	-0.00	
21	91.21	91.24	-0.03	

4.2 Remedial Measures

Since there are no existing structures within the Regulatory flood plain and one crossing of Second Line Road is subject to flooding, at present, minimal remedial measures would be required. Remedial measures could include undertaking a maintenance program to raise and/or increase the crossing conveyance capacity of the impacted road to reduce the threat of overtopping.

A full cost/benefit analysis should be completed to assess the implications of any maintenance or upgrading options.

5.0 Regulation Limit

Potential hazards associated with rivers, stream and their valley lands include flooding, slope instability, stream bank and valley erosion and the erosion associated with meandering rivers or streams. In determining the extent of the Regulation Limit for Ontario Regulation 153/06 (MVCA's regulation under Section 28 of the *Conservation Authorities Act*) the presence of all these potential hazards must be

considered to determine the requisite (most extensive) hazard. The Regulation Limit is defined by a 15 m buffer beyond the requisite hazard.

The extent of the Regulation Limit was determined using the flow chart and procedure documented in Appendix G and then also delineated on the maps.

6.0 Conclusions and Recommendations

The Regulatory flood plain for Casey Creek is delineated on 10 individual map sheets prepared at a scale of 1:2000. The 2017 air photos were used and clearly show Casey Creek, buildings, infrastructure, vegetation, and other details.

The analysis, documented in this report, meets the standards found in the *Technical Guide River & Stream Systems: Flooding Hazard Limit* (OMNR 2002) and therefore, the resulting Regulatory (100-year) flood plain delineation is suitable for use in MVCA's Regulation mapping as well as for municipal land use planning purposes.

There are limited flood-prone structures or roads along Casey Creek, however, all new development should be restricted from locating within the Regulatory flood plain.

Prepared by:

Juraj Cunderlik, Ph.D, P. Eng. Director, Water Resources Engineering

hand

Sobha Kunjikutty, Ph.D, P. Eng. Water Resources Engineer

7.0 References

- 1. Spargo, R. A. and W. E. Watt, "The Canadian Flood Damage Reduction Program", Proceedings of the U. N. World Water Conference, Mar del Plata, Argentina, 1977
- 2. Natural Resources Canada, Public Safety Canada, "Federal Floodplain Mapping Framework Version 1.0", 2017
- 3. Ontario Ministry of Natural Resources, "Technical Guide River and Stream Systems: Flooding Hazards Limit", 2002
- 4. Sewer Design Guidelines, City of Ottawa, SDG002, October 2012
- Mississippi Valley Conservation Authority, "Constance Creek Flood Plain Mapping Study", April 2017
- 6. M. E. Andrews and Associates Limited, "Constance Creek Flood Plain Mapping Study", October 1994
- 7. USACE (US Army Corps of Engineers) (2016) Hydrologic Modeling System HEC-HMS. User's Manual. USACE, Hydrologic Engineering Center, Davis, California, USA
- J. F. Sabourin and Associates Inc., "Stormwater Management Hydrologic Model User's Manual", 2000
- 9. Stantec, "Marchurst Estates Kanata, City of Ottawa Revised Stormwater Management Report", January 2014
- 10. Ontario Ministry of Transportation, "Drainage Management Manual", 1997
- 11. User Guide for Ontario Flow Assessment Tool (OFAT), Ministry of Natural Resources and Forestry, 2020
- 12. Ven Te Chow, "Open-Channel Hydraulics", 1959
- 13. Ontario Ministry of Natural Resources and Forestry, "Data Capture Specifications for Hydrographic Features Version 1.3", 2011

Appendices

Appendix A

LiDAR Acquisition Report

Final Report

For project:

LiDAR for City of Ottawa Mapping Program RFT No. 01912-90510-T01

Prepared for:

City of Ottawa 110 Laurier Avenue West – 3rd Floor East Ottawa, ON K1P 1J1

Prepared by:

Airborne Imaging 5757 4th Street SE Calgary, AB T2H 1K8

March 2013

Contents

Introduction	1
Personnel	
Project Schedule	1
LiDAR System & Flight Parameters	
Project Control	2
Check Points	
Calibration	4
Lidar Acquisition	4
LiDAR Data Processing	4
Deliverables	6
Vertical Accuracy Assessment	7
Conclusion	14

Appendix A	Overview Map	15
Appendix B	NAD83 (Original) Control Report	16
Appendix C	Unusable Monuments	58
Appendix D	Mission Map and Flight Logs	61
Appendix E	Point Cloud Strips by Flight Lines	76

Introduction

The City of Ottawa contracted Airborne Imaging, A Clean Harbors Company, in October of 2012 to acquire and deliver digital elevation data derived from airborne LiDAR (Light Detection and Ranging) to cover two areas in the Ottawa region.

This report focuses on LiDAR acquisition details, such as flight parameters, project control, ground truthing results and data processing technique and deliverables for the combined 2345.1 sq km for the Ottawa area (2218.7 sq km) and the Conservation Authority area (126.4 sq km) over Mississippi Lake.

See Appendix A for an overview map of the project.

Personnel

Forming a crew of seven, personnel assigned to acquire the LiDAR data included one Project Manager, two System & Base Operators, one surveyor, two pilots, and one AME (Aircraft Maintenance Engineer). The Project Manager, Allyson Fox, had a key role ensuring the project was completed on schedule. Her responsibilities included processing and verifying the integrity of all LiDAR and GPS data immediately after each flight mission. Allyson has extensive experience in the Lidar industry, and in the past 8 years has worked exclusively in the LiDAR industry.

For this project the crew was based in Ottawa and utilized the Carp airport for aircraft maintenance, fuel, and system calibration.

Project Schedule

On November 3rd 2012, Allyson Fox, the project manager and Roly Tang, the surveyor arrived in Ottawa. They spent eleven days in the field locating existing control, establishing a geodetic network and collecting ground truth survey data. The two system/base operators, Troy Sentner and Trace Trithardt arrived in Ottawa on November 11th and the aircraft and crew arrived on November 14th.

LiDAR System & Flight Parameters

The aircraft assigned to this project was a Cessna Caravan with call sign C-FARQ, and is owned and operated by Airborne Energy Solutions (AES), an air charter company located in Whitecourt, Alberta. Because of AES's robust safety program and efficient work practices, AES has been under contract with Airborne Imaging for 7 years without incident.

The LiDAR system utilized on this project was a Leica ALS70-HP, capable of laser pulse rates up to 500,000 Hz with Multiple Pulse in the Air (MPIA) technology. For this project the LiDAR data was acquired at an altitude of 1800m AGL (Above Ground Level) with the laser pulse rate set at 250 kHz, resulting in a data set with a point density averaging 4.4 points per meter². The total density is based on two overlapping flight line swaths flown in opposing directions to provide redundancy and to ensure there are no data holes (or slivers). The following details the flight parameters used:

Flight Height: 1800 m AGL Speed: 160 knots Flightline Spacing: 600 m Single Pass Swath width: 1200 m Overlap: 50% Scan Angle or FOV: 40° effective (42° minus 1° clipped on each side of the scan edge) Scan Frequency: 42Hz Scan Pulse Rate: 250 KHz 4.4 Points per Sq meter with overlap

Project Control

Control for this project consisted of a fully constrained closed loop static control network. All baselines for the network were kept to 50km or less and all observations were duplicated whenever possible. Control points for this project were strategically chosen so that they would have both federal NAD83CSRS (1997 Epoch V3) and provincial "NAD83 Original" coordinates associated with them. This allowed two separate instances of the control network to be processed. The first instance was processed in the NAD83CSRS datum and the second instance was processed in "NAD83 Original". Both networks were fixed vertically to CGVD28 and the HT2.0 geoid was used.

The rationale behind this maneuver is that the federal 3D densification network is a known entity to Airborne Imaging. By processing the data using the coordinates provided by NRCAN, Airborne Imaging is able to gain confidence in the quality of the network and the control points occupied. It also provides the framework to transform data for this project should the city of Ottawa ever transition to NAD83CSRS.

The NAD83CSRS network was built using 7 control points; 5 were bench marks occupied by Airborne imaging while the final two are members of the Canadian Active Control System (CACS). Of the seven control points used by Airborne Imaging, 4 were constrained horizontally and 6 were constrained vertically. As NRCAN publishes confidence intervals for the station, each station could be weighted in the fully constrained network. Appropriate standard deviations were associated with each station and the network was allowed to balance itself.

One of the CACS stations (943020) did not have published "NAD83 Original" coordinates associated with it and was not held as a constraint in the "NAD83 Original" network adjustment. As a result, the "NAD83 Original" network adjustment was constrained to 3 stations horizontally and 6 vertically.

Since Cosine does not publish the confidence intervals for control points, Airborne Imaging was left with two choices; hold all control points "fixed" or to give all the control points a reasonable estimated standard deviation. Holding the base stations "fixed" would effectively force errors inherent to the network into the floating stations (newly established control points A458 & A459 used for processing all the missions). Since multibase processing was to be used on this project and a high relative precision between base stations is required, holding stations fixed was deemed undesirable and all control points were given a standard deviation of 2cm horizontally and 5cm vertically.

Note that the Lidar survey was all based on the NAD83 (Original) network.

See Appendix B for the NAD83 (Original) control report.

Destroyed monuments

Difficulties were encountered during the first day of building the control network. Several control points were either not found, destroyed or found to be unusable due to their proximity to GNSS line of sight obstacles (tree cover) or their orientation (vertical rock face). Points that were found to be unusable are:

00119773030 - Condition unknown; access is blocked.
0011986u017 - Found in good condition but unusable.
0011986u144 - Found in good condition but unusable.
01919680197 - Destroyed. Location plots underneath a road.
00819758197 - Found in good condition but unusable.

Additional details can be found in Appendix C.

Check Points

Check points were surveyed to support the vertical accuracy assessment. For greater accuracy, the points have been surveyed in close proximity to control points that are part of our geodetic network. This way, the baseline distances were kept to a minimum distance for post-processing differential GPS.

The points collected on open flat surfaces were surveyed by rapid-static GPS with a minimum of 15 minutes of observations. The coordinates were derived by post-processing the GPS data. These points were used for calculating the Fundamental Vertical Accuracy.

For the Supplemental Vertical Accuracy, the check points were surveyed by two different methods. When skies were not obstructed, the surveyor would collect GPS data on a survey rod and walk to the check point location. The surveyor would collect data without moving for a few seconds. The coordinates were then derived by post-processing the data in kinematic mode. Most of the points in land cover categories "crop/pasture" and "thicket/shrub" were collected this way. For the "forested/wooded" land cover, the points were surveyed by total station.

Calibration

Calibration of raw LiDAR data before and after each flight mission is essential to LiDAR acquisition and is carried out post mission to fine tune systematic GPS & Inertial errors associated with aircraft & sensor roll, pitch, and heading. For the most part these errors are minimal but provide consistency for the data from mission to mission and also alleviates any gross errors that may have occurred during each flight mission.

A "Calibration Site" was established at the Carp airport, which consists of a primary control station, A458, and surveyed kinematic points on Carp Road collected at 1 second intervals over a distance of 1.4 km as to cover one full swath of data. Approximately 2km long strips of Lidar data was then flown twice in opposing directions, centered over the kinematic points and nearby buildings, once at the start of mission, and a second time at the end of mission.

Lidar Acquisition

Good weather was on our side and for a project this size, the data acquisition of the Lidar data took place during a short period of time. The fact that we had the personnel to fly two flights (or missions) per day helped us finish the acquisition within eight days. Seven missions were required to cover both areas of interest.

Two missions were flown on November 15. Then, an evening aircraft inspection revealed a faulty part requiring replacement. The part was ordered and replaced by November 19. Fortunately, the flying conditions were still good and two missions were flown on November 20, two more on November 21 and one on November 22 to complete the acquisition. As per contract requirements, there was no snow on the ground during the data acquisition period, and there were no leafs in the trees.

The orientation of the flight lines was designed to minimize the amount of aircraft turns and was flown at various azimuths. The aircraft was kept to a maximum distance of 45 kilometers from the nearest base station to achieve required GPS accuracies. GPS receivers were deployed on two base stations during flights and the trajectories were computed using multi-base solutions. See Appendix C for a Missions Map and Flight Logs.

LiDAR Data Processing

Calibration

After each mission, the point cloud strips from the "calibration passes" are compared to each other to ensure relative accuracy. The outside edges of scan can be compared in open areas to detect vertical differences which would point to roll or scale miscalibration values. Man-made features such as pitched-roof buildings are also useful to check for horizontal alignment. If the calibration values (angles between the laser sensor and the IMU) are found to have changed from the previous mission, it would show in the repeatability of the measured data sets. Corrective measures would then be taken to fine tune the proper angular values. Once the data fit well together, it is compared to a ground profile to validate the elevations in an <u>absolute</u> accuracy point of view. Statistics and visual graphs of the elevation differences are produced to confirm accuracy requirements. Once the final calibration values are obtained, the final point cloud data can be generated.

Occasionally, the point cloud generated from the manufacturer's software has a vertical bias which can be detected when compared to the ground truth. This behavior is not necessarily consistent from mission to mission but is monitored closely and shifted vertically accordingly. See Appendix D for a list of point cloud files by mission and the vertical shifts applied.

Since the raw point cloud is part of the deliverables and the maximum file size was not to exceed 2 GB per file, the point cloud strip files had to be split into smaller segments. Since the ALS70 system has a dual beam and the returns are saved in different classes for the two receivers, each strip was split by receiver into two different files. After splitting by receiver, some files (longer flight lines) were still greater than 2 GB in size, so another split was done for the first 70 million points into one file and then the rest into a second file. Appendix D also shows the split files and their numbering convention. They are divided into the Conservation Authority area (UTM18) and the main Ottawa area (MTM9).

Tiling

The entire point cloud was originally produced in its native UTM zone 18. The raw LiDAR strips were then imported into tiles of 1000m X 1000m tiles conforming to the client's requirements. In the file naming convention, the first three digits represent the easting in kilometers and the next four digits represent the northing in kilometers. These tiles contain points of all-returns from the LiDAR unit and are stored in individual binary files in .LAS 1.2 format.

Preliminary Classification

In order to eliminate the effects of artifacts left in the bare-earth, the tiles are processed with an automated, artifact removal technique and then followed up by manual inspection of the data. Point classification or artifact removal is done using a product by TerraSolid software running on Microstation V8 called TerraScan and TerraModel. The TerraScan software uses macros that are set-up to measure the angles and distances between points to determine what classification a point should be: ground, vegetation, other. The angle and distance values in the macros can be adjusted to be more or less aggressive with the classification of points by varying the incidence angles and estimated distances among neighboring points. The lower points are generally classified as ground returns, with the points above separated in low, medium and high vegetation. After an automated macro is run to determine classes, a manual QC is performed to fine tune the classification of points for the ground class. To better understand areas for improvement, the points that are classified as bare earth are extracted and turned into viewable TIN and grid surfaces. These surfaces are inspected for areas that appear rough, artificially flattened or truncated, no data areas, or have other viewable errors.

In cleaning up ground points, the focus is concentrated in areas where few ground points have been left in the bare earth model and the ground appears rough or lower and flatter than it may be in reality. The scarcity of ground points may be a result from no penetration through a dense vegetation layer, water bodies, low reflectivity objects, or too aggressive values with the macro. A manual inspection of these areas plays a major role in resolving any issues or irregularities with the bare earth model.

Hydro-Flattening & Final Classification

Once the ground class has reached a final level of classification accuracy, the hydroflattening process is initiated. The rivers and water bodies are digitized as break lines according to specifications with the support of aerial photography and Lidar intensity & surface model images. Elevations for the break lines are derived from the Lidar point cloud. The break lines are then used to classify the laser returns inside the polygons to the water class. A 1.5 meter buffer was created outside of the water body break lines and any points from the ground class falling within this buffer was re-classified to class 10 – "Breakline proximity".

The final point cloud has points in the following classes:

2	Ground
3	Low Vegetation (0 to 0.7m)
5	High Vegetation (above 0.7m)
7	Low Points (noise)
9	Water
10	Break line proximity
11	Withheld

Deliverables

The Conservation Authority area was delivered in the UTM zone 18 projection. For the main Ottawa area, the data was converted to the MTM zone 9 projection.

The deliverable formats consist of:

Raw Point Cloud:	1 file per swath, split not to exceed 2GB .LAS v1.2 format
Classified Point Cloud	d: .LAS v1.2 format (tiled)
Bare Earth DEM:	1m grids, hydro-flattened (elevations from the ground TIN, constrained to the 3D breaklines) Delivered in 32bit Geotiff format, tiled with 10m buffer
Break lines:	3D shape files of the rivers and lakes
Metadata:	FGDC compliant .xml file 1 file describing each deliverable formats for the project.

Vertical Accuracy Assessment

The assessment of vertical accuracy follows the ASPRS methodology of Fundamental Vertical Accuracy (FVA), Supplemental Vertical Accuracy (SVA) and Consolidated Vertical accuracy (CVA).

The FVA defines the accuracy of the point cloud on flat hard surfaces without vegetation obstructions. The SVA determines the accuracy of the ground surface under different classes of vegetation type. The following land cover types have been selected for this project:

Crop / Pasture Forested / Wooded Thicket / Shrub

The CVA is calculated by merging all the land cover type with the open flat surfaces.

Accuracy type	Accuracy achieved	Contract Accuracy requirements	Statistical method
FVA	13.0 cm	<= 36.3 cm	95% (2 sigma)
CVA	25.5 cm	<= 50 cm	95 th percentile
SVA	30.3 cm	<= 60 cm	95 th percentile

Below is a summary table of the accuracies achieved for this project.

Below is a breakdown of accuracy types for both the Conservation Authority area and the Ottawa area with a list of vertical differences between the control points and the ground surface.

Fundamental Vertical Accuracy

The accuracy statements for FVA are based on the premise that the 2-sigma confidence level (95% of the time) is twice the RMS value.

Conservation area (UTM18)

A comparison was made between the Lidar derived ground surface and the surveyed points on open flat surfaces.

The FVA (95%) is 13.0 cm.

Below are the statistics and list of vertical differences.

Average dz	-0.035
Minimum dz	-0.160
Maximum dz	+0.034
Average magnit	ude 0.045
Root mean squa	re 0.065
Std deviation	0.056

Number	Easting	Northing	Known Z	Laser Z	Dz
0000027	408321.771	4998433.840	138.476	138.450	-0.026
0000030	408321.726	4998433.840	138.524	138.450	-0.074
0000031	406790.219	4998316.384	145.441	145.440	-0.001
0000033	406665.054	4995368.393	135.118	135.020	-0.098
0000034	406818.938	4995183.789	136.371	136.380	+0.009
0000038	406811.510	4995167.537	136.415	136.410	-0.005
0000041	406727.787	4995288.094	135.393	135.370	-0.023
0000085	406768.006	4995251.773	135.836	135.720	-0.116
0000086	406762.799	4995247.240	135.750	135.740	-0.010
0000087	406802.379	4995185.496	136.396	136.430	+0.034
0000088	406826.190	4995214.216	135.847	135.850	+0.003
0000089	406828.519	4995213.828	135.828	135.760	-0.068
0000095	406813.181	4995155.200	136.270	136.110	-0.160
0000096	406808.449	4995156.817	136.486	136.500	+0.014
000A460	407928.410	4998193.734	142.046	142.060	+0.014
0TMP_12	406818.938	4995183.790	136.371	136.380	+0.009
OTMP_13	406665.054	4995368.394	135.118	135.020	-0.098

Ottawa area (MTM9)

A comparison was made between the Lidar derived ground surface and the surveyed points on open flat surfaces.

The FVA (95%) is 12.8 cm.

Below are the statistics and list of vertical differences.

Average	dz	-0.007
Minimum	dz	-0.228
Maximum	dz	+0.257
Average	magnitude	0.045
Root mea	an square	0.064
Std devi	ation	0.064

Number	Easting	Northing	Known Z	Laser Z	Dz
0000002	343498.617	5020015.358	116.295	116.340	+0.045
0000003	391233.824	5029446.332	66.059	66.050	-0.009
0000017	391210.115	5029446.304	64.368	64.310	-0.058
0000018	394465.525	5032457.605	83.970	83.990	+0.020
0000019	401482.567	5026083.691	73.925	73.920	-0.005
0000020	383929.275	5009499.550	84.002	83.990	-0.012
0000021	384562.221	5005945.788	92.474	92.340	-0.134
0000022	359331.262	4993587.740	104.582	104.620	+0.038
0000023	359202.997	4993471.243	104.479	104.510	+0.031
0000024	351545.133	4993625.087	125.002	124.850	-0.152
0000025	351523.442	4993713.488	125.877	125.800	-0.077
0000042	336561.020	5040030.222	64.969	64.970	+0.001
0000043	335624.603	5033664.310	82.508	82.590	+0.082
0000044	333833.259	5032133.610	110.453	110.420	-0.033
0000045	328698.178	5027607.916	94.755	94.760	+0.005
0000046	323704.988	5023194.027	99.032	99.030	-0.002
0000047	343588.777	5020127.938	117.747	117.730	-0.017
0000048	384213.302	5005730.266	91.370	91.410	+0.040
0000049	368747.595	4996821.420	87.867	87.840	-0.027
0000054	336576.023	5040081.947	64.734	64.740	+0.006
0000055	336535.631	5040044.880	64.802	64.790	-0.012
0000061	336638.652	5040049.498	65.414	65.430	+0.016
0000065	359341.610	4993576.274	105.238	105.010	-0.228
0000067	351523.450	4993713.461	125.863	125.800	-0.063
0000071	351536.812	4993640.544	125.336	125.370	+0.034
0000072	384213.283	5005730.255	91.370	91.410	+0.040
0000078 0000079	384180.087 401418.015	5005704.616 5026219.491	92.152 73.665	92.170 73.710	+0.018
0000099	394629.216	5031990.215	82.720	82.740	+0.045 +0.020
0000102	394668.722	5031986.460	82.803	82.740	-0.020
0000102	394470.440	5032438.372	84.048	84.010	-0.038
0000112	394597.512	5031983.351	82.681	82.700	+0.019
0000112	394550.940	5031960.516	82.081	82.340	+0.257
0000123	381497.192	5008749.054	83.448	83.520	+0.072
0000124	381488.138	5008774.487	83.965	84.070	+0.105
0000125	381500.753	5008780.448	83.578	83.600	+0.022
0000129	381507.407	5008767.248	85.197	85.160	-0.037
0000135	343706.623	5019618.961	117.913	117.920	+0.007
0000141	343910.869	5019746.486	118.439	118.460	+0.021
0000142	343889.690	5019763.984	118.018	118.030	+0.012
0000143	343875.856	5019768.547	118.531	118.520	-0.011
0000144	343453.623	5020229.534	116.015	115.990	-0.025
0000145	343465.739	5020227.001	116.383	116.370	-0.013
0000148	335605.563	5033679.022	82.363	82.320	-0.043
0000149	335617.047	5033691.822	82.284	82.250	-0.034
0000150	335626.387	5033701.219	81.892	81.890	-0.002
0000164	335629.450	5033670.499	82.541	82.510	-0.031
0000175	380461.318	5012746.058	92.751	92.690	-0.061

0000177	380479.176	5012664.932	93.749	93.710	-0.039
0000178	380499.141	5012618.305	94.462	94.390	-0.072
0000179	329046.417	5024140.712	120.582	120.600	+0.018
0000181	329063.871	5024114.004	120.611	120.580	-0.031
0000182	329116.980	5024056.614	120.901	120.850	-0.051
0000195	329240.831	5023910.696	122.225	122.280	+0.055
0000196	329249.674	5023912.752	122.404	122.360	-0.044
0000197	329266.526	5023923.427	122.275	122.220	-0.055
0000198	329248.551	5023936.942	121.975	121.990	+0.015
000A458	343498.664	5020015.341	116.295	116.340	+0.045
000A459	383697.649	5010038.373	86.905	86.960	+0.055
OTMP_01	391233.785	5029446.296	66.059	66.050	-0.009
OTMP_02	401482.567	5026083.691	73.926	73.920	-0.006
OTMP_03	401417.274	5026234.513	73.411	73.340	-0.071
0TMP_06	384562.221	5005945.788	92.474	92.340	-0.134
0TMP_07	384227.041	5005738.546	91.177	91.220	+0.043
0TMP_08	359331.262	4993587.740	104.582	104.620	+0.038
0TMP_09	359202.997	4993471.243	104.480	104.510	+0.030
0TMP_10	351545.133	4993625.088	125.003	124.850	-0.153
0TMP_11	351523.442	4993713.488	125.877	125.800	-0.077
0TMP_14	328698.178	5027607.916	94.756	94.760	+0.004
0TMP_15	335624.603	5033664.310	82.509	82.590	+0.081
0TMP_16	336561.020	5040030.223	64.970	64.970	+0.000
0TMP_17	336612.704	5040116.091	64.717	64.700	-0.017
0TMP_18	368189.855	5000401.001	88.632	88.580	-0.052
0TMP_20	380511.908	5012582.703	94.506	94.500	-0.006
0TMP_21	380450.050	5012751.297	92.752	92.700	-0.052
0TMP_22	381513.902	5008747.879	83.973	84.040	+0.067
0TMP_23	329216.615	5023934.988	122.000	122.010	+0.010
0TMP_24	329046.418	5024140.703	120.573	120.600	+0.027
TMP_07N	384213.302	5005730.267	91.370	91.410	+0.040

Supplemental Vertical Accuracy (by land cover type)

Since the SVA is expressed in percentile, the accuracy values below were derived by sorting the absolute differences and using the following formula:

$$n = \frac{P}{100} \times N + \frac{1}{2}$$

Crop / Pasture

The SVA (95th percentile) is 12.2 cm.

Conservation area (UTM18)

No crop/pasture were available and/or accessible for the Conservation Authority area.

Ottawa area (MTM9)

Average	dz	+0.012
Minimum	dz	-0.156
Maximum	dz	+0.122
Average	magnitude	0.041
Root mea	an square	0.054
Std devi	ation	0.053

Number	Easting	Northing	Known Z	Laser Z	Dz
004	391203.138	5029435.207	64.496	64.450	-0.046
006	391276.319	5029243.373	62.503	62.470	-0.033
009	391297.029			63.090	+0.057
104	394519.229	5032352.330	83.039	83.070	+0.031
105	394451.184	5032547.728	83.217	83.250	+0.033
106	394307.290	5032828.760	83.772	83.800	+0.028
107	394417.671	5032538.203	83.231	83.300	+0.069
108	394455.881	5032437.281	82.998	83.010	+0.012
111	394485.954	5032442.036	83.115	83.180	+0.065
114	381515.911	5008743.211	83.844	83.830	-0.014
115	381555.437				+0.001
116	381512.479	5008716.887			+0.122
117	381452.064				+0.115
118	381395.827	5008650.624	83.424	83.510	+0.086
119	381346.809	5008616.677			+0.034
120	381295.803	5008585.042	83.376	83.450	+0.074
121	381266.034	5008572.981	83.511	83.530	+0.019
130	343858.552	5019766.488			-0.005
131	343844.503	5019777.883	117.617	117.650	+0.033
132	343803.440	5019741.882	117.526	117.540	+0.014
133	343742.942	5019722.709	117.196	117.200	+0.004
134	343713.115	5019648.102	117.381	117.380	-0.001
136	343692.103	5019555.830	117.549	117.590	+0.041
137	343733.830	5019591.536			+0.025
138	343780.289	5019630.216		117.710	+0.040
139	343829.703	5019671.983		117.940	-0.007
140	343873.863	5019711.571		118.070	-0.008
152	335635.668	5033736.441	79.629	79.680	+0.051
153	335649.364	5033750.883			+0.004
154	335669.649	5033775.408			+0.030
155	335721.798	5033828.000			-0.057
156	335751.789	5033865.950	77.760	77.720	-0.040

158	335742.910	5033917.052	78.596	78.440	-0.156
159	335729.974	5033906.633	78.106	78.070	-0.036
160	335693.280	5033944.946	78.415	78.340	-0.075
161	335654.075	5033989.101	78.453	78.420	-0.033
162	335628.889	5034016.139	78.519	78.500	-0.019

Forested / Wooded

The SVA (95th percentile) for both areas is 21.8 cm.

Conservation area (UTM18)

Average dz Minimum dz Maximum dz Average magnitude Root mean square Std deviation	+0.022 -0.071 +0.230 0.093 0.125 0.142				
Number	Easting	Northing	Known Z	Laser Z	Dz
040 084 094 098	406674.064 406764.518 406814.785 406639.255	4995375.179 4995225.609 4995154.942 4995382.372	134.260 134.813 135.511 134.627	134.490 134.810 135.440 134.560	+0.230 -0.003 -0.071 -0.067

Ottawa area (MTM9)

Average dz	+0.020
Minimum dz	-0.215
Maximum dz	+0.256
Average magnitude	0.081
Root mean square	0.108
Std deviation	0.107

Number	Easting	Northing	Known Z	Laser Z	Dz
050	336544.147	5040142.788	65.047	65.110	+0.063
051	336571.236	5040153.610	66.147	66.200	+0.053
052	336563.485	5040138.216	65.788	65.820	+0.032
053	336557.546	5040114.308	64.518	64.620	+0.102
062	359284.180	4993583.573	104.378	104.460	+0.082
063	359308.753	4993652.784	105.633	105.670	+0.037
068	351553.656	4993636.897	123.819	123.950	+0.131
069	351564.817	4993729.580	124.829	124.870	+0.041
074	384240.189	5005716.829	91.016	91.190	+0.174
075	384269.826	5005721.023	91.074	91.230	+0.156
077	384229.693	5005672.585	92.109	92.280	+0.171
080	401503.188	5026088.849	72.761	72.800	+0.039
081	401498.622	5026107.041	72.568	72.590	+0.022
100	394708.889	5031976.647	81.902	82.120	+0.218
122	381495.566	5008736.814	83.509	83.470	-0.039
165	380450.369	5012712.074	92.087	92.000	-0.087
167	380442.959	5012746.473	91.844	91.740	-0.104
168	380435.383	5012765.381	92.412	92.310	-0.102
169	380430.965	5012776.338	92.531	92.500	-0.031
170	380433.169	5012801.409	92.126	92.110	-0.016
171	380431.353	5012773.065	91.994	92.250	+0.256
172	380455.429	5012787.749	91.814	91.660	-0.154
173	380474.789	5012747.440	91.881	91.910	+0.029
174	380471.287	5012753.970	91.983	91.770	-0.213

176	380470.207	5012720.310	92.555	92.340	-0.215
185	329198.818	5023989.758	121.458	121.460	+0.002
188	329188.763	5023932.503	121.534	121.570	+0.036
189	329191.585	5023923.905	121.552	121.540	-0.012
190	329200.295	5023917.932	121.540	121.540	+0.000
191	329211.734	5023913.796	121.674	121.670	-0.004
192	329220.827	5023915.786	121.864	121.980	+0.116
194	329231.245	5023910.620	122.056	122.170	+0.114
199	329237.978	5023948.034	121.865	121.740	-0.125
200	329237.785	5023952.599	121.867	121.870	+0.003
201	329241.444	5023967.976	121.906	121.890	-0.016
202	329241.227	5023980.642	121.888	121.940	+0.052
203	329248.736	5023984.422	122.118	122.090	-0.028
208	329252.195	5023893.034	122.484	122.470	-0.014

Thicket / Shrubs

The SVA (95th percentile) for both areas is 50.8 cm.

Conservation area (UTM18)

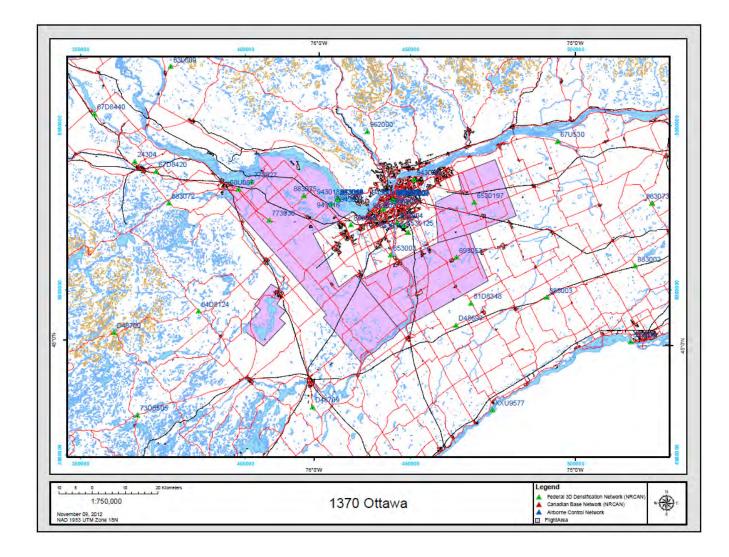
Average dz Minimum dz Maximum dz Average magnitude Root mean square Std deviation	+0.079 +0.015 +0.180 0.079 0.101 0.069				
Number	Easting	Northing	Known Z	Laser Z	Dz
026 036 037 039 083 097	407928.410 406818.541 406817.191 406671.485 406671.379 406428.110	4998193.733 4995166.440 4995166.834 4995366.764 4995366.287 4995566.117	142.045 135.354 136.086 134.319 134.300 135.012	142.060 135.400 136.110 134.470 134.480 135.070	+0.015 +0.046 +0.024 +0.151 +0.180 +0.058

Ottawa area (MTM9)

Average dz	+0.158
Minimum dz	-0.303
Maximum dz	+0.597
Average magnitude	0.181
Root mean square	0.232
Std deviation	0.172

Number	Easting	Northing	Known Z	Laser Z	Dz
001	383697.635	5010038.394	86.907	86.960	+0.053
007	391303.306	5029167.602	63.283	62.980	-0.303
010	391305.743	5029227.775	62.905	63.410	+0.505
015	391317.620	5029172.770	62.289	62.460	+0.171
016	391320.188	5029173.401	63.331	63.380	+0.049
064	359353.202	4993607.286	104.665	104.750	+0.085
066	359457.594	4993675.188	103.572	103.820	+0.248
070	351509.572	4993786.206	124.832	124.930	+0.098
073	384327.386	5005784.900	90.602	90.960	+0.358
076	384220.165	5005705.246	91.831	91.940	+0.109
082	401502.708	5026053.882	72.385	72.640	+0.255
101	394733.713	5031990.022	82.805	82.870	+0.065
103	394581.896	5032187.872	82.652	82.800	+0.148

109	394458.636	5032435.228	82.995	82.950	-0.045
126	381578.774	5008800.227	83.260	83.550	+0.290
127	381588.111	5008805.831	83.333	83.530	+0.197
128	381568.471	5008793.987	83.243	83.550	+0.307
146	343454.118	5020258.669	115.961	116.140	+0.179
147	343419.231	5020298.817	116.017	116.310	+0.293
151	335633.880	5033713.352	80.814	80.860	+0.046
157	335776.118	5033877.330	78.187	78.370	+0.183
163	335765.756	5033845.803	77.792	78.300	+0.508
166	380449.074	5012724.083	91.813	92.410	+0.597
180	329216.598	5023935.005	122.041	121.990	-0.051
183	329162.270	5024022.307	121.180	121.300	+0.120
184	329178.247	5024003.973	121.452	121.580	+0.128
186	329206.551	5023937.898	122.136	122.260	+0.124
187	329194.384	5023940.311	121.990	122.220	+0.230
193	329227.743	5023921.078	122.149	122.200	+0.051
204	329224.760	5023970.486	121.653	121.720	+0.067
205	329219.704	5023962.793	121.654	121.840	+0.186
206	329240.103	5023910.504	122.280	122.330	+0.050
207	329250.608	5023901.054	122.393	122.460	+0.067
209	329259.148	5023886.205	122.712	122.710	-0.002


Conclusion

Unfortunately, there were some delays during the delivery of the final products, mostly due to the digitizing of the water bodies. Our workflow was adjusted and the resulting hydro-flattened DEMs were much improved.

Overall, this project went really well especially during the field acquisition, covering over 2,300 square kilometers within eight calendar days. The accuracy of the data also proved to be excellent, being approximately twice more accurate than the contract requirements. It exceeds by far expectations.

Appendix A

Overview Map

The purple areas represent the Lidar areas of interest.

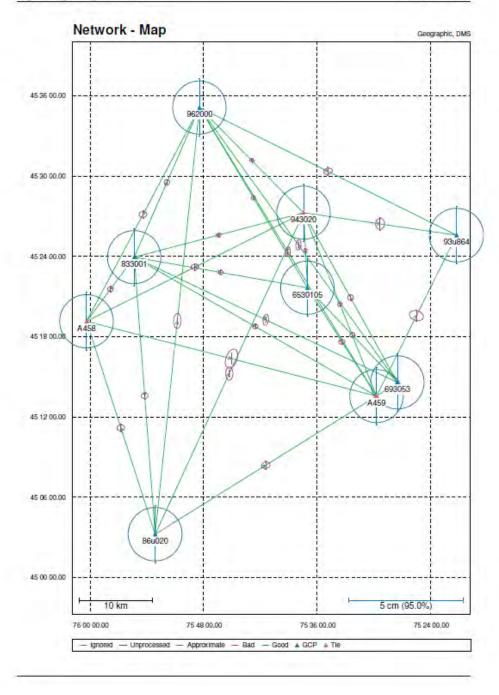
Appendix B NAD83 (Original) Static Control Report

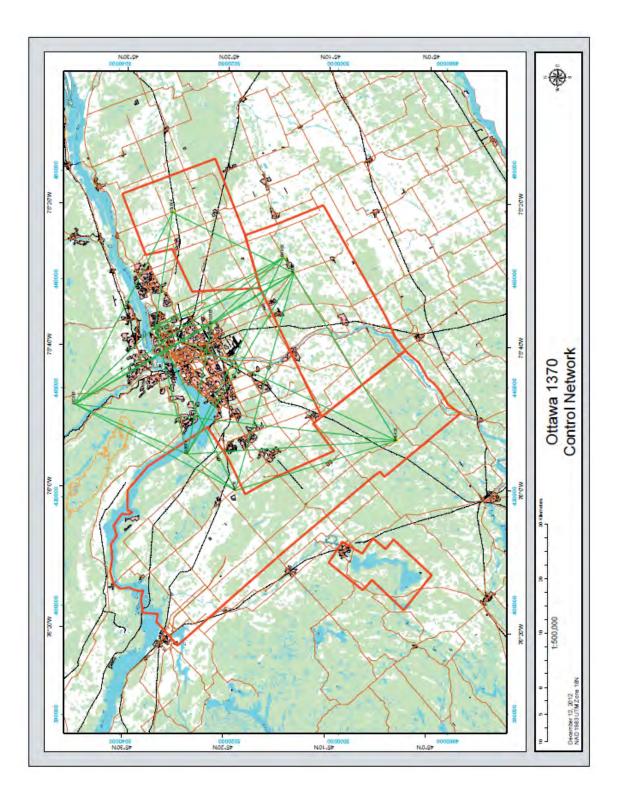
V. Static Control Report

- Final Adjusted Coordinates a.)
- b.) Traverse Overview
- C.) **Control Sheets**
- d.) Traverse Report
 e.) Minimally Constrained Network Adjustment
 f.) Fully Constrained Network Adjustment

a.) Final Adjusted Coordinates

1370 Ottawa Cosine-Full	GrafNet Version 8.40.2823	All Network Summary	Network	
Project:	Program:	Profile:	Source:	


Datum: NAD83 - Original, (processing datum) Control IDs: 6530105, 693053, 93u864, 86u020, 962000, 833001 Geoid: HT2_0-Canada.wpg (Absolute correction)


Map projection Info: Defined grid: UTM, Zone 18

Station			Lat	abut		-	Longitude	H-E11	Undulation	H-MSL	Northing	Easting
		4	0-/+	(S M (÷	(S M Q-/+	(m)	(II)	(II)	(H)	(m)
530105	45	21	38.	21 38.76363	-75	E.	01.42340	62.353	-32.709	95.063	5023213.563	451672.249
93053	40	14	34.	16547	-75	5	30.11428	70.243	-32.491	102.734	5010027.795	464026.740
33001	45	23	52.	96696	-75	22	20.13842	£16.5P	-33.216	77.129	5027675.545	427817.892
6u020	45	03	14.	29119	-75	53	07,35308	90.152	-32.972	123.123	4989327.043	430284.381
3u864	45	25	34.	56318	-75	2	15.56335	50.614	-32.411	83.025	5030366.150	472281.760
A458	45	61	08.	45 19 08.48081	-76	00	00 23,02443	83,032	-33.294	116.326	5018883.333	421122.067
459	45	1	33.	20076	-75	53	43,07762	54,426	-32.509	86.936	5008163.625	461116.531
962000	5	35	.90	05164	-75	48	26.36350	236.011	-32.885	268.897	5048258.361	437021.452
43020	4	27	14.	96199	-75	33	25.76426	83.552	-32.743	116.295	5033592.650	451223.151

b.) Traverse Overview

c.) Control Sheets

STATION: 0011986U020

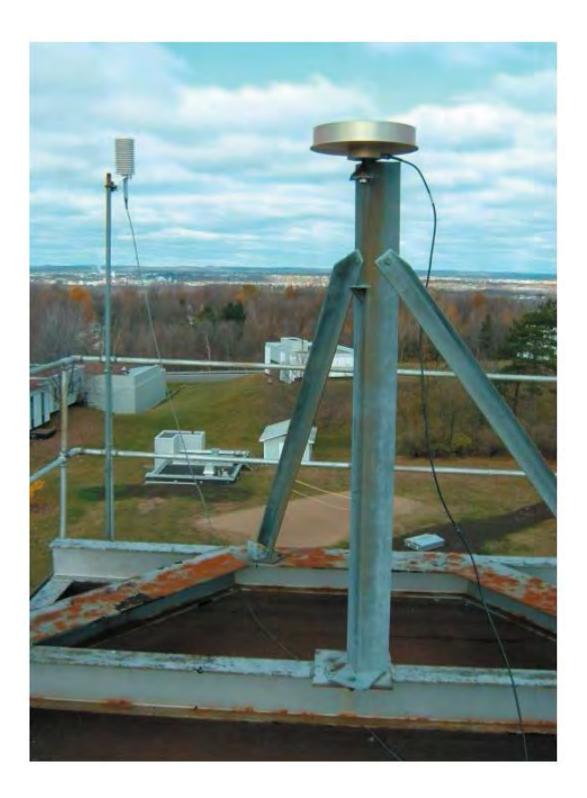
Also known as:	00186U020, 86U020, CP88211
Monument status:	Existing
NTS mapsheet:	31 G/4
OBM mapsheet:	10 18 4300 49850
Horizontal datum:	NAD-1927:SCAL
Horizontal accuracy:	UNCLASSIFIED
Latitude:	N45°03 '10.0xxxx "
Longitude:	W75°53 '06.0xxxx "
Ellipsoidal elevation:	124.xxx
UTM-18 Easting:	E430312.xxx
UTM-18 Northing:	N4989194.xxx
UTM-18 Cmbd sc-fact:	0.99964028
UTM-18 Mrdnl convg:	-0°37 '35.0"
MTM-09 Easting:	E353241.XXX
MTM-09 Northing:	N4990494.×××
MTM-09 Cmbd sc-fact:	0.99990940
MTM-09 Mrdnl convg:	0°26 '07.0 "
Vertical datum:	CGVD-1928:1978
Vertical accuracy:	First order
Orthometric elev:	123.129
Meridional defl:	
Prime vert defl:	
Undulation:	
Location:	Township: DWYER HILL ROCK OUTCROP ALONG HWY NO 3 SE OF DWYER HILL, 1.7 KM NW OF INTER WITH ROGER STEVENS RD (HWY NO 6), 22 M NW OF TELEPHONE POLE, 9.7 M NE OF C/L OF HWY, 3.6 M SW OF FENCE LINE, TABLET IN TOP OF ROCK APPROX 1.0 M ABOVE RD LEVEL.
Maintenance:	GSC; last inspected: 1988
Number of Ref Sketches:	0

STATION: 0011993U864

Also known as:	00193U864, 93U864, N8U94	
Monument status:	Existing	
NTS mapsheet:	31 G/6	
OBM mapsheet:	10 18 4700 50300	
Horizontal datum:	NAD-1927:SCAL	
Horizontal accuracy:	UNCLASSIFIED	
Latitude:	N45°25 '33.0xxxx'	
Longitude:	W75°21′14.0xxxx′	
Ellipsoidal elevation:	83.×××	
UTM-18 Easting:	E472315.xxx	
UTM-18 Northing:	N5030317.×××	
UTM-18 Cmbd sc-fact:	0.99959642	
UTM-18 Mrdnl convg:	-0°15'07,5'	
MTM-09 Easting:	E394486.xxx	
MTM-09 Northing:	N5032405.xxx	
MTM-09 Cmbd sc-fact:	0.9998585	
MTM-09 Mrdnl convg:	0*48 '59.3 '	
Vertical datum:	CGVD-1928:1978	
Vertical accuracy:	First order	
Orthometric elev:	82.993	
Meridional defl:		
Prime vert defl:		
Undulation:		
Location:	Township: SARSFIELD GROUND ROD UNDER ACCESS COVER ON SOUTHWEST SIDE OF REGIONAL ROAD NO. 35 (DUNNING ROAD). 1.3 KM SOUTHEAST OF JUNCTION WITH COLONIAL ROAD (REGIONAL ROAD NO. 26), 0.5 KM NORTHWEST OF WATSON ROAD, OPPOSITE POINT ON HIGHWAY 24 M NORTHWEST OF "MAXIMUM 60 KM/HR BEGINS" SIGN FOR SOUTHBOUND TRAFFIC, 12.2 M FROM DUNNING ROAD CENTRE LINE, 5.2 M SOUTHEAST OF POWER POLE, 65 CM NORTHEAST OF FENCE LINE, DIRECTLY BENEATH POWER LINE, 1 M BELOW HIGHWAY LEVEL.	
Maintenance:	GSC; last inspected; 1993	
Number of Ref Sketches:	0	

STATION: 00119693053

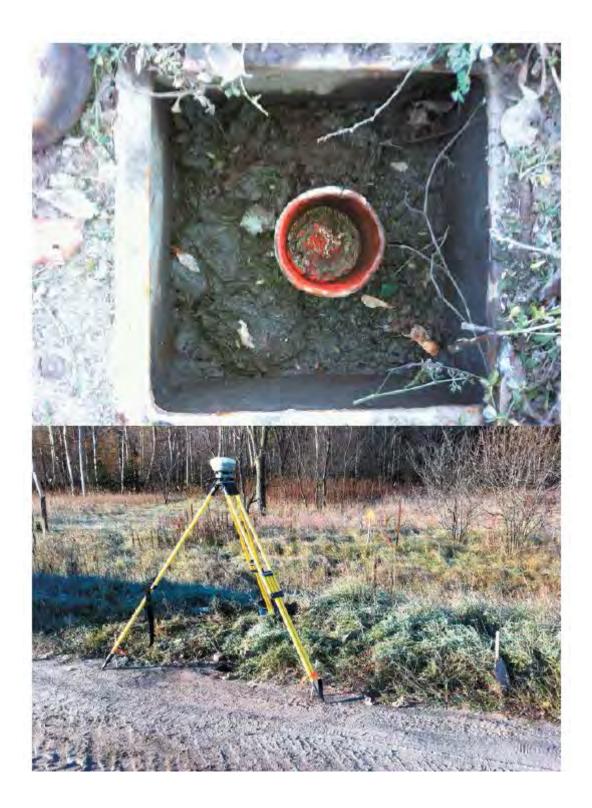
Also known as:	001693053, 693053, G.S. METCALFE, METCALFE	
Monument status:	Existing	
Station type:	FRTR	
NTS mapsheet:	31 G/3	
OBM mapsheet:	10 18 4600 50100	
Horizontal datum:	NAD-1983:ORIG	
Horizontal accuracy:	First order	
Latitude:	N45°14 '34.16402 "	
Longitude:	W75°27 '30.11505"	
Ellipsoidal elevation:	70.xxx	
UTM-18 Easting:	E464026.724	
UTM-18 Northing:	N5010027.750	
UTM-18 Cmbd sc-fact:	0.99960488	
UTM-18 Mrdnl convg:	-0°19 '31.8 "	
MTM-09 Easting:	E386573.748	
MTM-09 Northing:	N5011957.010	
MTM-09 Cmbd sc-fact:	0.99997116	
MTM-09 Mrdnl convg:	0°44 '22.9"	
Vertical datum:	CGVD-1928:1978	
Vertical accuracy:	UNCLASSIFIED	
Orthometric elev:	102.xxx	
Meridional defl:	-1.5"	
Prime vert defl:	4.4"	
Undulation:		
Location:	Township: METCALFE LOCATED AT THE SITE OF A UNITEL COMMUNICATIONS TOWER, 1.4 KM NORTHEAST OF THE MAIN INTERSECTION IN THE TOWN OF METCALFE. THE STATION IS SOUTHWEST FROM THE TOWER, MARKED BY A GSC BRASS TABLET STAMPED 693053 SET 15 CM ABOVE GROUND IN A 30 CM SQUARE CONCRETE PIER ON BEDROCK, REFERENCED BY 3 GSC REFERENCE TABLETS STAMPED 1 TO 3 SET IN THE CONCRETE BASES FOR THE TOWER GUY WIRES. NOTE: KEY TO GATE REQUIRED.	
Maintenance:	GSC	
Other horiz data [ord]:	NAD-1927:1974 [1], NAD-1927:1976 [1]	
Networks [usage]:	0060 [fix], 1002 [fix], 1048 [fix], 1503 [fix], 1512 [fix]	
Number of Ref Sketches:	2	



STATION: 00119833001

Also known as:	001833001, 833001, BOSSLER 6A, G.S. BOSSLER, G.S. PIER6A	
Monument status:	Existing	
Monument type:	CPillar	
Station type:	GPS	
NTS mapsheet:	31 G/5	
OBM mapsheet:	10 18 4250 50250	
Horizontal datum:	NAD-1983:ORIG	
Horizontal accuracy:	First order	
Latitude:	N45°23 '55.95047 '	
Longitude:	W75°55 '20.13754 "	
Ellipsoidal elevation:	44.×××	
UTM-18 Easting:	E427817.912	
UTM-18 Northing:	N5027675.579	
UTM-18 Cmbd sc-fact:	0.99965715	
UTM-18 Mrdnl convg:	-0°39 '24.1'	
MTM-09 Easting:	E350031.235	
MTM-09 Northing:	N5028933.080	
MTM-09 Cmbd sc-fact:	0,99991823	
MTM-09 Mrdnl convg;	0°24 '40.9″	
Vertical datum:	CGVD-1928:1978	
Vertical accuracy:	UNCLASSIFIED	
Orthometric elev:	77.×××	
Meridional defl:	-0.3 "	
Prime vert defl:	1.7"	
Undulation:		
1	SHIRLEYS BAY(BOSSLER)-NATIONAL PCBL-CBN PILLAR,	
Location:	CONCRETE PILLAR WITH STEEL TOP PLATE (CBN PILLAR) ON SOUTHEAST SIDE OF RIDDELL DRIVE, 3.9 KM NORTHEAST OF JUNCTION WITH COUNTY ROAD 9 (DUNROBIN ROAD), 0.25 KM SOUTHWEST OF ROAD TO "DND CONNAUGHT RANGE", 16.3 M FROM CENTRE LINE OF ROAD, OPPOSITE POINT ON ROAD 6.2 M SOUTHWEST OF "40 KM/HR" SIGN WITH WARNING LIGHT FOR NORTHBOUND TRAFFIC, ABOUT 1 M ABOVE ROAD LEVEL, ELEVATION TAKEN ON TOP AT CENTRE OF MAIN CIRCULAR PLATE ANCHORED ON TOP OF PILLAR.	
Maintenance:	Inspected by Geodetic Survey Division in 1999. Status: Good	
	Accessible by passenger car or light truck and a walk of less than 50 m.	
Other horiz data [ord]:	NAD-1983:CSRS:CBNv3-1997.0 [A]	
Networks [usage]:	1002 [fix], CBN31A [wtd]	

STATI	STATION: 00119943020	
Monument status:	Existing	
Monument type:	CAF	
Station type:	GPS	
NTS mapsheet:	31 G/5	
OBM mapsheet:	10 18 4500 50300	
Horizontal datum:	NAD-1983:CSR5:CBNv3-1997.0	
Horizontal accuracy;	CSRS class E	
Latitude:	N45°27 '14.95142'	
Longitude:	W75°37 '25.76671'	
Ellipsoidal elevation:	83.573	
UTM-18 Easting:	E451223.095	
UTM-18 Northing:	N5033592.324	
UTM-18 Cmbd sc-fact:	0,99961615	
UTM-18 Mrdnl convg:	-0*26 '40.6'	
MTM-09 Easting:	E373328.876	
MTM-09 Northing:	N5035287.148	
MTM-09 Cmbd sc-fact:	0.99994462	
MTM-09 Mrdnl convg:	0°37'28.1	
Vertical data:	N/A	
Location:	Created on 2007/12/14.	
Networks [usage]:	CBN31B [wtd]	
Number of Ref Sketches:	0	


STATION: 00119962000

Also known as:	001962000, 962000, GATINEAU CAG
Monument status:	Existin
NTS mapsheet:	31 G/1
OBM mapsheet:	10 18 4350 5045
Horizontal datum:	NAD-1927: SCA
Horizontal accuracy:	UNCLASSIFIE
Latitude:	N45° 35 '06.0××××
Longitude:	W75°48 '26.0××××
Ellipsoidal elevation:	269.××
UTM-18 Easting:	E437029.xx
UTM-18 Northing:	N5048256.××
UTM-18 Cmbd sc-fact:	0.9996065
UTM-18 Mrdnl convg:	-0°34 '35.8
MTM-09 Easting:	E358859.xx
MTM-09 Northing:	N5049688.××
MTM-09 Cmbd sc-fact:	0,9998937
MTM-09 Mrdnl convg:	0°29 '41.5
Vertical datum:	CGVD-1928:197
Vertical accuracy:	First orde
Orthometric elev:	268.90
Meridional defl:	
Prime vert defl:	
Undulation:	
Maintenance:	G5C; last inspected: 1999
Number of Ref Sketches:	

STATION: 001196530105

Also known as:	0016530105, 6530105, NCC 105, VANC
Monument status:	Existing
NTS mapsheet:	31 G/5
OBM mapsheet:	10 18 4500 50200
Horizontal datum:	NAD-1983:ORIG
Horizontal accuracy:	UNCLASSIFIED
Latitude:	N45°21 '38.7××××
Longitude:	W75° 37 '01.4××××'
Ellipsoidal elevation:	59.xxx
UTM-18 Easting:	E451672.xxx
UTM-18 Northing:	N5023213.xxx
UTM-18 Cmbd sc-fact:	0.99961947
UTM-18 Mrdnl convg:	-0°26 20.7
MTM-09 Easting:	E373971.xxx
MTM-09 Northing:	N5024915.xxx
MTM-09 Cmbd sc-fact:	0.99994956
MTM-09 Mrdnl convg:	0°37′41.8
Vertical datum:	CGVD-1928:1978
Vertical accuracy:	First order
Orthometric elev:	95.084
Meridional defl:	
Prime vert defl:	
Undulation:	
Location:	Township: OTTAWA FOR DESCRIPTIONS CONTACT SURVEY SECTION, N.C.C. Township: OTTAWA FOR DESCRIPTIONS CONTACT SURVEY SECTION, N.C.C.
Maintenance:	GSC; last inspected:
Other horiz data [ord]:	NAD-1927:SCAL [-]
Number of Ref Sketches:	

STATION: 01919680105

a size of the second	and show the set of			
Also known as:	019680105, 6530105, STA, 109			
Monument status:	Existin			
Station type:	TRAV			
NTS mapsheet:	31 G/5			
OBM mapsheet:	10 18 4500 50200			
Horizontal datum:	NAD-1983:ORIG			
Horizontal accuracy:	Second order			
Latitude:	N45°21 '38.76398 '			
Longitude:	w75°37′01.42352′			
Ellipsoidal elevation:	62.xxx			
UTM-18 Easting:				
UTM-18 Northing:	N5023213.574			
UTM-18 Cmbd sc-fact:	0.99961900			
UTM-18 Mrdnl convg:	-0°26 '20.7			
MTM-09 Easting:	E373971.649			
MTM-09 Northing:	N5024915.155			
MTM-09 Cmbd sc-fact:	0.99994905			
MTM-09 Mrdnl convg;	0°37′41.8′			
Vertical datum:	CGVD-1928:1978			
Vertical accuracy:	UNCLASSIFIED			
Orthometric elev:	95.xx			
Meridional defl:	-1.1			
Prime vert defl:	3.9			
Undulation:				
Other horiz data [ord]:	NAD-1927:1974 [2], NAD-1927:1976 [2]			
Networks [usage]:	0953 [fix], 1042 [free], 1505 [fix], 1510 [fix]			
Number of Ref Sketches:	and a subset of the first of			

d.) Traverse Report

* GrafNet - GRAPHIC GPS NETWORK PROCESSING * SOFTWARE PACKAGE * * * TRAVERSE SOLUTION: * * Copyright NovAtel Inc. (2012) * * Version: 8.40.3116 1.4 * PROJECT: 1370_Ottawa_Cosine-Min ************** DATUM: NAD83 - Original GRID: UTM, Zone 18 UNITS: metres (see preferences to change) GEOID: C:\Programs\CommonFiles\WaypointGeoids\HT2_0-Canada.wpg ************************* STATIONS (STATUS) : ************************** HgtStatus Result Coordinates derrived from... DOK Pub(3D) (-) Station Type 6530105 Control-3D OK Pub (3D) (-) Good 6530105 Good 6530105 Good 833001 6530105 Good 943020 6530105 693053 Check-H OK 833001 Check-H OK 86u020 Check-V OK 93u864 Check-V OK
 Check-V
 OK
 Good
 943020
 6530105

 Loop Tie
 OK
 Good
 6530105

 Loop Tie
 OK
 Good
 630105

 Loop Tie
 OK
 Good
 6320105

 Loop Tie
 OK
 Good
 6320105

 Loop Tie
 OK
 Good
 6320105
 943020 962000 A458 A459 ****************************** STATIONS (COORDINATES) : ******************************** Latitude Longitude Grid-E Grid-N (D M S) (D M S) Latitude EllHgt OrthoHgt Station (m)
 (D A S)
 (D A S)
 (m)
 (m)
 (m)

 6530105
 45 21 38.76398
 -75 37 01.42352
 451672.247 5023213.574

 693053
 45 14 24.16578
 -75 27 30.11434
 464026.739 5010027.805

 833001
 45 25 5.94976
 -75 55 20.11486
 427817 388 5027875 558
 62.375 70.270 102.761

833001	45	23	55.94976	-75	55	20.13860	427817.888	5027675.558	43.937	77.152
86u020	45	03	14.29160	-75	53	07.35321	430284.378	4989327.055	90.173	123.145
93u864	45	25	34.56339	-75	21	15.56341	472281.759	5030366.157	50.641	83.052
943020	45	27	14.96240	-75	37	25.76432	451223.150	5033592.663	83.572	116.316
962000	45	35	06.05203	-75	48	26.36357	437021.450	5048258.373	236.036	268.921
A458	4.5	19	08.48115	-76	00	23.02470	421122.062	5018883.343	83.060	116.355
A459	45	13	33.20063	-75	29	43.07794	461116.524	5008163.627	54.449	86.959

(m)

95.084

-------LOOP, CHECK & DUPLICATE TIES: *******************************

Result DEast DNorth DHeight Name/Session Type (m) (m) 0.0154 0.0542 POINT 693053 CheckPnt Good POINT 833001 CheckPnt Good -0.0229 -0.0219 0.0085 0.0025 -0.0023 693053 to 833001 LoopTie Good POINT 86u020 CheckPnt Good (-) 0.0163 (-) 833001 to 86u020 (1) 0.0004 -0.0024 -0.0005 Duplicate Good 943020 to 86u020 LoopTie Good +0.0083 -0.0040 0.0013 962000 to 86u020 LoopTie Good -0.0080 -0.0013 -0.0036 0.0164 -0.0150 A459 to 86u020 LoopTie Good 0.0076 0.0169 -0.0057 A459 to 86u020 (2) 0.0080 Duplicate Good POINT 93u864 CheckPat Good 0.0598 (-) (-) 943020 to 93u864 (2) Duplicate Good 0.0014 -0.0071 0.0098 -0.0008 -0.0024 962000 to 93u864 LoopTie Good 0.0008 0.0003 -0.0050 962000 to 93u864 (2) Duplicate Good 0.0010 A459 to 93u864 (1) Duplicate Good 0.0039 -0.0014 0.0111 A459 to 93u864 LoopTie Good 0.0049 -0.0045 0.0061 693053 to 943020 LoopTie Good 0.0003 -0.0004 -0.0015 833001 to 943020 0.0024 0.0018 -0.0062 LoopTie Good POINT 962000 CheckPnt Good (-) (-) 0.0196 -0.0004 693053 to 962000 LoopTie Good 0.0010 0.0095 0.0025 -0.0000 -0.0070 833001 to 962000 (1) Duplicate Good 833001 to 962000 LoopTie Good 0.0012 0.0001 0.0018 943020 to 962000 (1) Duplicate Good 0.0004 -0.0020 0.0094 -0.0001 -0.0001 -0.0002 943020 to 962000 (2) Duplicate Good 943020 to 962000 LoopTie Good 0.0000 -0.0023 -0.0013 833001 to A458 (1) Duplicate Good -0.0020 -0.0027 0.0036 -0.0041 -0.0032 943020 to A458 LoopTie Good 0.0074 Duplicate Good 943020 to A458 (2) -0.0021 -0.0037 0.0081 -0.0038 -0.0009 962000 to A458 (1) Duplicate Good 0.0099 -0.0028 -0.0024 0.0084 962000 to A458 LoopTie Good -0.0008 0.0160 -0.0025 A459 to A458 (1) Duplicate Good A459 to A458 LoopTie Good 0.0021 0.0166 0.0004 -0.0011 -0.0007 86u020 to A458 (1) Duplicate Good 0.0025 86u020 to A458 LoopTie Good 8000 0- 8000 0- 0000 -0.0007 -0.0051 6530105 to A459 (2) Duplicate Good 0.0056 -0.0049 -0.0055 -0.0081 693053 to A459 LoopTie Good 693053 to A459 (2) Duplicate Good -0.0061 -0.0087 -0.0038 833001 to A459 LoopTie Good -0.0081 -0.0174 0.0069 Duplicate Good -0.0004 -0.0018 833001 to A459 (2) 0.0029 Duplicate Good 0.0010 -0.0036 833001 to A459 (3) 0.0006 -0.0002 -0.0049 943020 to A459 (3) Duplicate Good 0.0041 Duplicate Good 943020 to A459 (2) -0.0021 0.0001 0.0045 -0.0062 -0.0063 943020 to A459 (1) Duplicate Good 0.0017 943020 to A459 LoopTie Good -0.0104 -0.0191 0.0136 962000 to A459 (3) Duplicate Good -0.0029 -0.0121 -0.0035 Duplicate Good 0.0133 0.0008 -0.0015 962000 to A459 (2) 962000 to A459 LoopTie Good -0.0047 -0.0031 -0.0157 Duplicate Good -0.0049 -0.0178 962000 to A459 (4) 0.0025 RMS (tie points) 0.0047 0.0079 0.0065 RMS (check points) 0.0195 0.0414 0.0373

(m)

e.) Minimally Constrained Network Adjustment

```
* NETWORK - WEIGHTED GPS NETWORK ADJUSTMENT
                                                       +
                                                         +
            * (c) Copyright NovAtel Inc., (2012)
                                                        -
                                                        *
            * Version: 8.40.2823
            * FILE: 1370_Ottawa_Cosine-Min.net
            DATUM: 'NAD83 - Original'
SCALE_FACTOR: 1.0000
  DATUM:
  CONFIDENCE LEVEL: 39.40 % (Scale factor is 1.0009)
INPUT CONTROL/CHECK POINTS
           -- LATITUDE -- -- LONGITUDE -- ELLHGT - HZ-SD V-SD
STA ID
        TYPE
6530105 GCP-3D 45 21 38.76398 -75 37 01.42352
693053 CHK-H2 45 14 34.16402 -75 27 30.11505
                                                62.375 0.02000 0.05000
          CHK-HZ 45 23 55.95047 -75 55 20.13754
833001
861020
          CHK-VT
                                                 90.157
9211864
          CHK-UT
                                                 50,582
         CHK-VT
962000
                                                 236.016
INPUT VECTORS
SESSION NAME
                    VECTOR(m) ----- Covariance (m) [unscaled] -----
                      DX/DY/DZ
                                      standard deviations in brackets
6530105 to 693053 (1) 14380.9703 1.0983e-006 (0.0010)
                    -5919.1208 -4.5997e-007 2.9878e-006 (0.0017)
                    -9214.2995 3.1686e-007 -2.0565e-006 3.3923e-006 (0.0018)
6530105 to 833001 (1) -23915.3118 7.2199e-007 (0.0008)
                    -2941.6521 -4.5076e-007 2.2929e-006 (0.0015)
                     2961.7213 3.3055e-007 -1.4387e-006 2.7585e-006 (0.0017)
6530105 to 943020 (1) -2344.6249 3.7602e-007 (0.0006)
                     7013.8458 -2.4703e-007 1.1821e-006 (0.0011)
                     7301.9796 1.5923e-007 -7.1155e-007 1.3263e-006 (0.0012)
6530105 to 962000 (1) -18772.7616 6.5384e-007 (0.0008)
13429.0816 -4.3023e-007 2.0395e-006 (0.0014)
17601.3773 2.7497e-007 -1.2319e-006 2.3043e-006 (0.0015)
6520105 to A459 (1) 11905.6608 1.1016e-006 (0.0010)
                    -7929.2105 -7.2047e-007 3.7042e-006 (0.0019)
                    -10550.9089 4.3494e-007 -2.0495e-006 3.8901e-006 (0.0020)
6530105 to A459 (2) 11905.6596 1.0824e-006 (0.0010)
-7929.2031 -6.5614e-007 3.1875e-006 (0.0018)
-10550.9093 5.2142e-007 -2.2215e-006 4.2571e-006 (0.0021)
```

43

693052 to 833001 (1) -38296.2895 6.3693e-006 (0.0025) 2977.4633 -1.0160e-006 3.8537e-006 (0.0020) 12176.0208 1.0815e-006 -1.8645e-006 2.4886e-006 (0.0016) 693053 to 943020 (1) -16725.5954 1.4130e-006 (0.0012) 12932.9658 -5.6379e-007 3.6986e-006 (0.0019) 16516.2804 3.9807e-007 -2.4421e-006 3.9853e-006 (0.0020) 693053 to 962000 (1) -33153.7330 5.0314e-006 (0.0022) 19348.2082 -5.8554e-007 3.7283e-006 (0.0019) 26815.6694 8.4634e-007 -1.7741e-006 2.2855e-006 (0.0015) 693053 to A459 (1) -2475.3042 2.4925e-007 (0.0005) -2010.0903 -1.7464e-007 7.9714e-007 (0.0009) -1336.5998 9.9773e-008 -4.4230e-007 8.1577e-007 (0.0009) 693053 to A459 (2) -2475.3044 2.8179e-007 (0.0005) -2010.0849 -1.8050e-007 7.0750e-007 (0.0008) -1336.6005 1.2583e-007 -4.6045e-007 9.1949e-007 (0.0010) 833001 to 86u020 (1) 9444.8815 2.4499e-006 (0.0016) -25718.2431 -1.6148e-006 8.1986e-006 (0.0029) -26964.5139 9.1619e-007 -4.6785e-006 7.7834e-006 (0.0028) 833001 to 86u020 (2) 9444.8822 1.6470e-006 (0.0013) -25718.2443 -1.0401e-006 4.9441e-006 (0.0022) -26964.5160 7.1333e-007 -3.2457e-006 5.5963e-006 (0.0024) 833001 to 943020 (1) 21570.6860 6.5300e-007 (0.0008) 9955.4918 -4.6399e-007 1.9087e-006 (0.0014) 4340.2614 2.9314e-007 -1.1672e-006 2.1220e-006 (0.0015) 823001 to 962000 (1) 5142.5490 6.2180e-007 (0.0008) 16370.7283 -4.4010e-007 1.8202e-006 (0.0013) 14639.6611 2.7916e-007 -1.1153e-006 2.0339e-006 (0.0014) 833001 to 962000 (2) 5142.5488 1.3594e-006 (0.0012) 16370.7346 -5.0127e-007 3.6322e-006 (0.0019) 14639.6546 3.7283e-007 -2.4078e-006 3.9678e-006 (0.0020) 833001 to A458 (1) -4857.3548 1.0635e-006 (0.0010) -7751.5543 -7.7319e-007 3.3892e-006 (0.0018) -6208.1479 4.4387e-007 -1.8980e-006 3.3744e-006 (0.0018) -4857.3557 1.0151e-006 (0.0010) 833001 to A458 (2) -7751.5592 -5.8655e-007 3.0053e-006 (0.0017) -6208.1472 5.0513e-007 -2.1160e-006 4.2035e-006 (0.0021) 833001 to A459 (1) 35820.9762 1.0077e-006 (0.0010) -4987.5397 -7.1133e-007 2.9402e-006 (0.0017) -13512.6229 4.5922e-007 -1.8248e-006 3.3340e-006 (0.0018) 833001 to A459 (2) 35820.9722 3.2336e-006 (0.0018) -4907.5551 -2.6643e-006 1.2719e-005 (0.0036) -13512.6310 3.7195e-007 -6.7847e-006 1.1194e-005 (0.0033) 833001 to A459 (2) 35820.9709 2.1145e-006 (0.0015) -4987.5558 -1.2482e-006 6.1734e-006 (0.0025) -13512.6281 1.0671e-006 -4.4070e-006 6.7991e-006 (0.0030)

-14302.2374 1.8273e-006 (0.0014) 86u020 to A458 (1) 17966.6876 -1.1049e-006 6.3241e-006 (0.0025) 20756.3675 6.0586e-007 -3.5632e-006 6.0893e-006 (0.0025) -14302.2379 1.8617e-006 (0.0014) 17966.6851 -9.2963e-007 5.7379e-006 (0.0024) 20756.3700 7.9984e-007 -4.0665e-006 7.7354e-006 (0.0028) 86u020 to A458 (2) 943020 to 86u020 (2) -12125.7975 8.0859e-006 (0.0028) -35673.7365 7.5852e-007 7.7081e-006 (0.0028) -31304.7723 3.2002e-007 -3.2957e-006 4.0029e-006 (0.0020) 943020 to 93u864 (1) 20961.0352 5.4770e-006 (0.0023) 3167.7466 -6.9436e-007 1.6015e-005 (0.0040) -2198.2966 8.8623e-007 -1.2368e-005 1.6222e-005 (0.0040) 943020 to 93u864 (2) 20961.0308 1.3060e-006 (0.0011) 3167.7578 -9.2622e-007 3.3312e-006 (0.0018) -2198.2985 7.3966e-007 -2.1968e-006 4.0449e-006 (0.0020) 943020 to 962000 (1) -16428.1390 3.3821e-006 (0.0018) 6415.2435 -3.0003e-006 1.0476e-005 (0.0032) 10299.3924 4.6056e-007 -3.1336e-006 9.9023e-006 (0.0031) 943020 to 962000 (2) -16425.1366 4.9104e-007 (0.0007) 6415.2357 -3.2168e-007 1.4773e-006 (0.0012) 10299.3979 1.9636e-007 -9.0508e-007 1.7295e-006 (0.0013) 943020 to 962000 (2) -16428.1369 4.3836e-007 (0.0007) 6415.2365 -2.7020e-007 1.3422e-006 (0.0012) 10299.4003 1.7662e-007 -8.4579e-007 1.6325e-006 (0.0013) -26428.0403 1.8337e-006 (0.0014) 943020 to A458 (1) -17707.0488 -1.2629e-006 5.9512e-006 (0.0024) -10548.4084 7.3413e-007 -3.3083e-006 6.0942e-006 (0.0025) 943020 to A458 (2) -26428.0425 1.9399e-006 (0.0014) -17707.0485 -1.1253e-006 5.7298e-006 (0.0024) -10548.4086 9.7467e-007 -4.0401e-006 8.0313e-006 (0.0028) 943020 to A459 (1) 14250.2904 7.1279e-007 (0.0008) -14943.0493 -4.9832e-007 2.0401e-006 (0.0014) -17852.8853 3.1283e-007 -1.2612e-006 2.3337e-006 (0.0015) 943020 to A459 (2) 14250.2871 2.0990e-006 (0.0014) -14943.0529 -1.4687e-006 8.4905e-006 (0.0029) -17852.8917 6.6398e-008 -4.7487e-006 8.2570e-006 (0.0029) 943020 to A459 (3) 14250.2844 1.4095e-006 (0.0012) -14943.0502 -8.7196e-007 3.9547e-006 (0.0020) -17852.8879 6.7527e-007 -2.7910e-006 5.4367e-006 (0.0023) 14250.2901 7.5137e-007 (0.0009) 943020 to A459 (4) -14943.0314 -5.3759e-007 2.1814e-006 (0.0015) -17852.8847 3.4499e-007 -1.3379e-006 2.4604e-006 (0.0016) 962000 to 93u864 (1) 37389.1721 2.2879e-006 (0.0015) -3247.4868 -1.6101e-006 7.4527e-006 (0.0027) -12497.6932 7.2197e-007 -4.4251e-006 8.4183e-006 (0.0029)

962000 to 86u020 (2)	4302.3402	9.8420e-006 (0.0031)
		1.2744e-006 8.6923e-006 (0.0029)
		-3.7981e-007 -4.0042e-006 4.8476e-006 (0.0022
962000 to 93u864 (2)	37389.1704	1.9656e-006 (0.0014)
	-3247.4851 -	-1.3805e-006 5.2292e-006 (0.0023)
	-12497.6916	1.0531e-006 -3.4354e-006 6.3037e-006 (0.0025)
962000 to A458 (1)	-9999.9040	1.8169e-006 (0.0013)
		-1.2427e-006 5.9135e-006 (0.0024)
	-20847.8097	7.2287e-007 -3.2920e-006 6.0808e-006 (0.0025)
962000 to A458 (2)		1.9267e-006 (0.0014)
		-1.1155e-006 5.6958e-006 (0.0024)
	-20847.8075	9.6921e-007 -4.0220e-006 8.0128e-006 (0.0028)
962000 to A459 (1)		4.3294e-006 (0.0021)
		-1.7304e-007 3.2689e-006 (0.0018)
	-28152.2730	5.3724e-007 -1.5375e-006 2.0444e-006 (0.0014)
962000 to A459 (2)		2.7063e-005 (0.0052)
		-1.1243e-006 6.3565e-006 (0.0025)
	-28152.2857	3.7311e-006 -3.3069e-006 5.7467e-006 (0.0024)
962000 to A459 (3)		1,4164e-005 (0.0038)
		-1.5872e-006 2.1200e-005 (0.0046)
	-28152.2753	3.6439e-006 -6.0518e-006 7.5441e-006 (0.0027)
		5,2608e-006 (0.0023)
		-7.2756e-007 3.9230e-006 (0.0020)
	-28152.2755	7.1993e-007 -1.8934e-006 2.4183e-006 (0.0016)
A459 to 93u864 (2)	6710.7427	4.4127e-006 (0.0021)
	18110.8090 -	-1.5710e-006 2.3748e-005 (0.0049)
	15654.5907 8	8,8536e-007 -8.0878e-006 1.0952e-005 (0.0033)
A459 to 86u020 (1)		2,3809e-006 (0.0015)
		-1.5965e-006 8.2248e-006 (0.0029)
	-13451.8867	8.1231e-007 -4.6084e-006 7.5314e-006 (0.0027)
A459 to 86u020 (2)		1.6221e-006 (0.0013)
		-1.0246e-006 4.7604e-006 (0.0022)
	-13451.8937	7.0887e-007 -3.1361e-006 5.5372e-006 (0.0024)
A459 to 93u864 (1)		2.7893e-006 (0.0017)
		-1.3693e-006 7.0546e-006 (0.0027)
	15654.5850 -	-7.2468e-007 -2.6245e-006 9.1427e-006 (0.0030)
		3.7249e-005 (0.0061)
A459 to A458 (1)	0000 A 0100	-5.9376e-006 9.0878e-006 (0.0030)
A459 to A458 (1)		The second se
A459 to A458 (1)		5.8402e-006 -4.3996e-006 6.4618e-006 (0.0025)
	7304.4736	5.8402e-006 -4.3996e-006 6.4618e-006 (0.0025) 2.1837e-005 (0.0047)
	7304.4736 \$ -40678.3276 -2764.0124	

*********	******	*********	******	******	********	*********
OUTPUT	VECTOR	RESIDUALS	(East,	North,	Height -	Local Level)
**********	******	**********	******	******	********	************

SESSION NAME	RE	RN	RH	- PPM -	DIST	- STD -	
	(m)	(m)	(m.)		(km)	(m)	
6530105 to 693053 (1)	-0.0011	0.0006	-0.0038	0.224	18.1	0.0027	
6530105 to 833001 (1)	0.0002	-0.0018	-0.0016	0.100	24.3	0.0024	
6530105 to 943020 (1)	-0.0014	-0.0020	0.0018	0.293	10.4	0.0017	
6530105 to 962000 (1)	-0.0013	-0.0013	-0.0018	0.090	29.0	0.0022	
6530105 to A459 (1)	0.0041	0.0080	-0.0005 \$			0.0029	
6530105 to A459 (2)	0.0035	0.0029				0.0029	
693053 to 833001 (1)	0.0098	0.0001	-0.0000			0.0036	
693053 to 943020 (1)	0.0000	-0.0030	0.0041			0.0030	
693053 to 962000 (1)	-0.0006	-0.0009				0.0033	
693053 to A459 (1)	0.0003	0.0019				0.0014	
693053 to A459 (2)	-0.0009	-0.0013				0.0014	
833001 to 86u020 (1)	-0.0005	-0.0030	0.0033			0.0043	
833001 to 86u020 (2)	-0.0009	-0.0006	0.0039			0.0035	
833001 to 943020 (1)	0.0008	0.0016				0.0022	
833001 to 962000 (1)	0.0010	0.0005		0.325			
833001 to 962000 (2)	-0.0004	0.0006	0.0016			0.0030	
833001 to A458 (1)	-0.0009	-0.0020	0.0005			0.0028	
833001 to A458 (2)	0.0011	0.0007	-0.0031		C C C C C C C C C C C C C C C C C C C	0.0029	
833001 to A459 (1)	-0.0041	-0.0077	0.0081 \$			0.0027	
833001 to A459 (2)	0.0035	0.0080	0.0040			0.0052	
833001 to A459 (3)	0.0050	0.0061	0.0017			0.0041	
86u020 to A458 (1)	0.0009	0.0006				0.0038	
86u020 to A458 (2)	0.0020	0.0005				0.0039	
943020 to 86u020 (2)	-0.0077	-0.0044				0.0044	
943020 to 93u864 (1)	-0.0000	0.0062	-0.0071			0.0061	
943020 to 93u864 (2)		-0.0009				0.0029	
943020 to 962000 (1)	0.0005		0.0058			0.0049	
943020 to 962000 (2)	0.0000	0.0007				0.0019	
943020 to 962000 (3)	0.0001	-0.0016	-0.0049			0.0018	
943020 to A458 (1)	-0.0015	-0.0023	0.0009			0.0037	
943020 to A458 (2)	0.0005	-0.0028	0.0016			0.0040	
943020 to A459 (1)	-0.0007	0.0037				0.0023	
943020 to A459 (2)	0.0034	0.0100				0.0043	
943020 to A459 (2)	0.0053	0.0051	0.0018			0.0033	
943020 to A459 (4)	-0.0048	-0.0091	0.0113 \$			0.0023	
962000 to 93u864 (1)	-0.0010	0.0031	-0.0027			0.0043	
962000 to 86u020 (2)	-0.0074	-0.0024				0.0048	
962000 to 93u864 (2)	0.0002	0.0005	-0.0024			0.0037	
962000 to A458 (1)	-0.0013	-0.0007	0.0070			0.0037	
962000 to A458 (2)	-0.0003	-0.0022	0.0055			0.0040	
962000 to A459 (1)	0.0007	0.0062	-0.0143 \$			0.0031	
962000 to A459 (2)	0.0166	0.0101	-0.0001 \$			0.0063	
962000 to A459 (3)	0.0026	-0.0028	-0.0021			0.0066	
962000 to A459 (4)	0.0006	-0.0086	0.0038			0.0034	
A459 to 93u864 (2)	-0.0006	-0.0082	0.0013			0.0063	
A459 to 86u020 (1)	0.0028	0.0059	-0.0122 \$			0.0043	
A459 to 86u020 (2)	0.0032	0.0065	-0.0029			0.0035	
A459 to 93u864 (1)	-0.0017	-0.0052	0.0062			0.0044	
A459 to A458 (1)	-0.0036	0.0069	-0.0067			0.0073	
A459 to A458 (2)	-0.0007	0.0076				0.0070	
RMS	0.0039	0.0047	0.0052				

\$ - This session is flagged as a 3-sigma outlier

CHECK POINT RESIDUALS (East, North, Height - Local Level)

STA. NAME	RE (m)	RN (m)	RH (m)
693053	0.0143	0.0548	
833001	-0.0228	-0.0237	
86u020			0.0186
93u864			0.0540
962000			0.0178
RMS	0.0191	0.0422	0.0345

CONTROL POINT RESIDUALS (ADJUSTMENT MADE)

STA. NAME	RE	RN	RH
6530105	(m) -0.0000	(m) 0.0000	(m) 0.0000
RMS	0.0000	0.0000	0.0000

OUTPUT STATION COORDINATES (LAT/LONG/HT)

STA ID	LA	TITUDE	LON	GITUDE	- ELLHGT -
6530105	45 21	38.76398	-75 37	01.42352	62.3750
693053	45 14	34.16579	-75 27	30.11439	70.2660
833001	45 23	55.94970	-75 55	20.13859	43.9358
86u020	45 03	14.29152	-75 53	07.35325	90.1755
93u864	45 25	34.56353	-75 21	15.56348	50.6360
943020	45 27	14.96233	-75 37	25.76439	83.5741
962000	45 35	06.05199	-75 48	26.36363	236.0338
A458	45 19	08.48112	-76 00	23.02464	83.0556
A459	45 13	33.20109	-75 29	43.07775	54.4490

OUTPUT VARIANCE/COVARIANCE						
		2				
STA_ID	SE/SN/SUP	CX matrix (m)				
	(39.40 %)	(not scaled by confidence level)				
	(m.)	(ECEF, XYZ cartesian)				
6530105	0.0200	4.6397e-004				
	0.0200	-2.4947e-004 1.3728e-003				
	0.0500	2.6080e-004 -1.0170e-003 1.4632e-003				
693053	0.0200	4.6420e-004				
	0.0200	-2.4959e-004 1.3734e-003				
	0.0501	2.6088e-004 -1.0174e-003 1.4639e-003				

833001	0.0200	4.6417e-004	
	0.0200	-2.4959e-004 1.3734e-003	
	0.0501	2.6088e-004 -1.0174e-003	1.4639e-003
86u020	0.0200	4.6441e-004	
	0.0200	-2.4969e-004 1.3740e-003	
	0.0501	2.6094e-004 -1.0177e-003	1.4644e-003
93u864	0.0200	4.6449e-004	
	0.0200	-2.4978e-004 1.3743e-003	
	0.0501	2.6099e-004 -1.0179e-003	1.4649e-003
943020	0.0200	4.6413e-004	
	0.0200	-2.4956e-004 1.3733e-003	
	0.0501	2.6086e-004 -1.0173e-003	1.4638e-003
962000	0.0200	4.6416e-004	
	0.0200	-2.4957e-004 1.3733e-003	
	0.0501	2.6087e-004 -1.0173e-003	1.4638e-003
A458	0.0200	4.6431e-004	
	0.0200	-2.4966e-004 1.3738e-003	
	0.0501	2.6093e-004 -1.0176e-003	1.4643e-003
A459	0.0200	4.6414e-004	
	0.0200	-2.4956e-004 1.3733e-003	
	0.0501	2.6087e-004 -1.0173e-003	1.4638e-003

VARIANCE FACTOR = 7.1427

Note: Values < 1.0 indicate statistics are pessimistic, while values > 1.0 indicate optimistic statistics. Entering this value as the network adjustment scale factor will bring variance factor to one.

f.) Fully Constrained Network Adjustment

```
* NETWORK - WEIGHTED GPS NETWORK ADJUSTMENT *
             * (c) Copyright NovAtel Inc., (2012)
                                                       1.4
                                                        -
            * Version: 8.40.3116
                                                       1.4
            * FILE: 1370 Ottawa Cosine-Full.net
                                                       DATUM:
                  'NAD83 - Original'
   SCALE FACTOR: 7.8672
   CONFIDENCE LEVEL: 95.00 % (Scale factor is 2.4479)
 INPUT CONTROL/CHECK POINTS
 TYPE -- LATITUDE -- -- LONGITUDE -- ELLHGT - HZ-SD V-SD
 STA ID
 6530105 GCP-3D 45 21 38.76398 -75 37 01.42352 62.375 0.02000 0.05000
                                                 0.02000
0.02000
90.157
50.582
          GCP-H2 45 14 34.16402 -75 27 30.11505
GCP-H2 45 23 55.95047 -75 55 20.13754
 693053
 833001
                                                             0.05000
           GCP-VT
 86u020
 93u864
         GCP-VT
 962000
          GCP-VT
                                                236.016
                                                              0.05000
  INPUT VECTORS
      VECTOR(m) ----- Covariance (m) [unscaled] -----
 SESSION NAME
                      DX/DY/DZ
                                     standard deviations in brackets
 6530105 to 943020 (1) -2344.6249 3.7602e-007 (0.0006)
7013.8458 -2.4703e-007 1.1821e-006 (0.0011)
                     7301.9796 1.5923e-007 -7.1155e-007 1.3263e-006 (0.0012)
 6530105 to 962000 (1) -18772.7616 6.5384e-007 (0.0008)
                     13429.0816 -4.3023e-007 2.0395e-006 (0.0014)
                    17601.3773 2.7497e-007 -1.2319e-006 2.3043e-006 (0.0015)
6520105 to A459 (1) 11905.6608 1.1016e-006 (0.0010)
                     -7929.2105 -7.2047e-007 3.7042e-006 (0.0019)
                    -10550.9089 4.2494e-007 -2.0495e-006 3.8901e-006 (0.0020)
 6530105 to A459 (2) 11905.6596 1.0834e-006 (0.0010)
                    -7929.2031 -6.5614e-007 3.1875e-006 (0.0018)
-10550.9093 5.2142e-007 -2.2215e-006 4.2571e-006 (0.0021)
 693053 to 6530105 (1) -14380.9670 1.0958e-006 (0.0010)
                     5919.1176 -4.6020e-007 2.9861e-006 (0.0017)
9214.3003 3.1482e-007 -2.0529e-006 3.3805e-006 (0.0018)
 693053 to 943020 (1) -16725.5954 1.4130e-006 (0.0012)
                    12922.9658 -5.6379=-007 3.6986e-006 (0.0019)
16516.2804 3.9807e-007 -2.4421e-006 3.9852e-006 (0.0020)
```

602052	+-	962000 /	11 -22152 7220	5.0314e-006 (0.0022)
				-5.8554e-007 3.7283e-006 (0.0019)
				8.4634e-007 -1.7741e-006 2.2855e-006 (0.0015)
693053	to	A459 (1)		2.4925e-007 (0.0005)
				-1.7464e-007 7.9714e-007 (0.0009)
			-1336.5998	9.9773e-008 -4.4230e-007 8.1577e-007 (0.0009)
693053	to	A459 (2)	-2475,3044	2.8179e-007 (0.0005)
				-1.8050e-007 7.0750e-007 (0.0008)
				1.2583e-007 -4.6045e-007 9.1949e-007 (0.0010)
			as da hardi	
833001	to	6530105		7.2159e-007 (0.0008)
				-4.4981e-007 2.2929e-006 (0.0015)
			-2961.7200	3.2911e-007 -1.4388e-006 2.7583e-006 (0.0017)
833001	to	693053 (1) 38296.2821	6.3592e-006 (0.0025)
			-2977.4627	-1.0169e-006 3.8846e-006 (0.0020)
			-12176.0198	1.0838e-006 -1.8663e-006 2.4905e-006 (0.0016)
800000		86u020 (2.4499e-006 (0.0016)
000001	50	564020 1		-1.6148e-006 8.1986e-006 (0.0029)
				9.1619e-007 -4.6785e-006 7.7834e-006 (0.0028)
			20304.0103	5.10150 00/ 4.0/050 000 /./8340 000 (0.0020)
833001	to	86u020 (2) 9444.8822	1.6470e-006 (0.0013)
			-25718.2443	-1.0401e-006 4.9441e-006 (0.0022)
			-26964.5160	7.1333e-007 -3.2457e-006 5.5963e-006 (0.0024)
822001	+-	942020 (11 21570 6860	6.5300e-007 (0.0008)
000001	00			-4.6399e-007 1.9087e-006 (0.0014)
				2.9314e-007 -1.1672e-006 2.1220e-006 (0.0015)
833001	to	962000 (6.2180e-007 (0.000B)
				-4.4010e-007 1.8202e-006 (0.0013)
			14039.0011	2.7916e-007 -1.1153e-006 2.0339e-006 (0.0014)
833001	to	962000 (2) 5142.5488	1.3594e-006 (0.0012)
			16370.7346	-5.0127e-007 3.6322e-006 (0.0019)
			14639.6546	3.7283e-007 -2.4078e-006 3.9678e-006 (0.0020)
822001	+-	3458 (1)	-4857 2548	1.0635e-006 (0.0010)
000001	00	H100 (1)		-7.7319e-007 3.3892e-006 (0.0018)
				4.4387e-007 -1.8980e-006 3.3744e-006 (0.0018)
833001	to	A458 (2)		1.0151e-006 (0.0010)
				-5.8655e-007 3.0053e-006 (0.0017)
			-6208.1472	5.0513e-007 -2.1160e-006 4.2035e-006 (0.0021)
833001	to	A459 (1)	35820.9762	1.0077e-006 (0.0010)
			-4987.5397	-7.1133e-007 2.9402e-006 (0.0017)
			-13512.6229	4.5922e-007 -1.8248e-006 3.3340e-006 (0.0018)
	1	A459 (2)		3.2336e-006 (0.0018) -2.6643e-006 1.2719e-005 (0.0036)
833001	to			=/ cseve=008 1 //18e=005 /0 00261
822001	to			
833001	to			
		A459 (3)	-13512.6310	
			-13512.6310 35820.9709	3.7195e-007 -6.7847e-006 1.1194e-005 (0.0023)

86u020 to 943020 (2) 12125.7975 8.1039e-006 (0.0028) 35673.7365 7.6212e-007 7.7122e-006 (0.0028) 31304.7724 3.2021e-007 -3.2895e-006 3.9955e-006 (0.0020) 86u020 to 962000 (2) -4302.3402 9.8667e-006 (0.0031) 42088.9775 1.2758=-006 8.6999=-006 (0.0029) 41604.1687 -3.7951=-007 -3.9956=-006 4.8351=-006 (0.0022) 86u020 to A458 (1) -14302.2374 1.8273e-006 (0.0014) 17966.6876 -1.1049e-006 6.3241e-006 (0.0025) 20756.3675 6.0586e-007 -3.5632e-006 6.0893e-006 (0.0025) -14302.2379 1.8617e-006 (0.0014) 17966.6851 -9.2963e-007 5.7379e-006 (0.0024) 86u020 to A458 (2) 20756.3700 7.9984e-007 -4.0668e-006 7.7354e-006 (0.0028) 86u020 to A459 (1) 26376.0929 2.3795e-006 (0.0015) 20730.7070 -1.5932e-006 8.2288e-006 (0.0029) 13451.8891 8.0656e-007 -4.6072e-006 7.5277e-006 (0.0027) 26376.0950 1.6207e-006 (0.0013) 86u020 to A459 (2) 20730.7010 -1.0226e-006 4.7636e-006 (0.0022) 13451.8960 7.0472e-007 -3.1360e-006 5.5345e-006 (0.0024) 943020 to 93u864 (1) 20961.0352 5.4770e-006 (0.0023) 3167.7466 -6.9436e-007 1.6015e-005 (0.0040) -2198.2966 8.8623e-007 -1.2368e-005 1.6222e-005 (0.0040) 943020 to 93u864 (2) 20961.0308 1.3060e-006 (0.0011) 3167.7578 -9.2622e-007 3.3312e-006 (0.0018) -2198.2985 7.3966e-007 -2.1968e-006 4.0449e-006 (0.0020) 943020 to 962000 (1) -16428.1390 2.3821e-006 (0.0018) 6415.2435 -3.0003e-006 1.0476e-005 (0.0032) 10299.3924 4.6056e-007 -3.1336e-006 9.9023e-006 (0.0031) 943020 to 962000 (2) -16428.1366 4.9104e-007 (0.0007) 6415.2357 -3.2168e-007 1.4773e-006 (0.0012) 10299.3979 1.9636e-007 -9.0508e-007 1.7295e-006 (0.0013) 943020 to 962000 (3) -16428.1369 4.3836e-007 (0.0007) 6415.2365 -2.7020e-007 1.3422e-006 (0.0012) 10299.4003 1.7662e-007 -8.4579e-007 1.6325e-006 (0.0013) 943020 to A458 (1) -26428.0402 1.8337e-006 (0.0014) -17707.0488 -1.2629e-006 5.9512e-006 (0.0024) -10548.4084 7.3413e-007 -3.3083e-006 6.0942e-006 (0.0025) 943020 to A458 (2) -26428.0425 1.9399e-006 (0.0014) -17707.0485 -1.1253e-006 5.7298e-006 (0.0024) -10548.4086 9.7467e-007 -4.0401e-006 8.0313e-006 (0.0028) 14250.2904 7.1279e-007 (0.0008) -14943.0493 -4.9832e-007 2.0401e-006 (0.0014) -17852.8853 3.1283e-007 -1.2612e-006 2.3337e-006 (0.0015) 943020 to A459 (1) 943020 to A459 (2) 14250.2871 2.0990e-006 (0.0014) -14943.0529 -1.4687e-006 8.4905e-006 (0.0029) -17852.8917 6.6398e-008 -4.7487e-006 8.2570e-006 (0.0029)

		1.4095e-006 (0.0012)
		-8.7196e-007 3.9547e-006 (0.0020)
	-17852.8879	6.7527e-007 -2.7910e-006 5.4367e-006 (0.0023)
943020 to A459 (4)		7.5137e-007 (0.0009)
		-5.3759e-007 2.1814e-006 (0.0015)
	-17852.8847	3.4499e-007 -1.3379e-006 2.4604e-006 (0.0016)
962000 to 93u864 (2)	37389.1704 1	1.9656e-006 (0.0014)
		-1.3805e-006 5.2292e-006 (0.0023)
	-12497.6916	1.0531e-006 -3.4354e-006 6.3037e-006 (0.0025)
962000 to 93u864 (1)	37389.1721 2	2.2879e-006 (0.0015)
	-3247.4868 -	-1.6101e-006 7.4527e-006 (0.0027)
	-12497.6932	7.2197e-007 -4.4251e-006 8.4183e-006 (0.0029)
962000 to A458 (1)	-9999.9040 1	1.8169e-006 (0.0013)
	-24122.2846	-1.2427e-006 5.9135e-006 (0.0024)
	-20847.8097	7.2287e-007 -3.2920e-006 6.0808e-006 (0.0025)
962000 to A458 (2)	-9999.9050 1	1.9267e-006 (0.0014)
	-24122.2848	-1.1155e-006 5.6958e-006 (0.0024)
	-20847.8075	9.6921e-007 -4.0220e-006 8.0128e-006 (0.0028)
962000 to A459 (1)	30678.4292 4	1.3294e-006 (0.0021)
		-1.7304e-007 3.2689e-006 (0.0018)
		5.3724e-007 -1.5375e-006 2.0444e-006 (0.0014)
962000 to A459 (2)	30678.4099 2	2.7063=-005 (0.0052)
		-1.1243e-006 6.3565e-006 (0.0025)
		3.7311e-006 -3.3069e-006 5.7467e-006 (0.0024)
962000 to A459 (3)	30678,4237 1	1.4164e-005 (0.0038)
		-1.5872e-006 2.1200e-005 (0.0046)
		3.6439e-006 -6.0518e-006 7.5441e-006 (0.0027)
962000 to A459 (4)	30678.4236 5	5.3608e-006 (0.0023)
		-7.2756e-007 3.9230e-006 (0.0020)
		7.1993e-007 -1.8934e-006 2.4183e-006 (0.0016)
A458 to A459 (1)	40678.3202 3	3.7178e-005 (0.0061)
and the second second		-5.9775e-006 9.1048e-006 (0.0030)
		5.8610e-006 -4.4119e-006 6.4701e-006 (0.0025)
A458 to A459 (2)	40678.3185 2	2.1785e-005 (0.0047)
		-9.0586e-006 1.9206e-005 (0.0044)
		1.5610e-006 -7.7312e-006 7.8939e-006 (0.0028)
		4127e-006 (0.0021)
A459 to 93u864 (2)	6710.7427 4	
	6710.7427 4 18110.8090 -	-1.5710e-006 2.2748e-005 (0.0049)
A459 to 93u864 (2)	6710.7427 4 18110.8090 - 15654.5907 8	-1.5710e-006 2.3748e-005 (0.0049) 3.3536e-007 -8.0878e-006 1.0952e-005 (0.0033)
	6710.7427 4 18110.8090 - 15654.5907 8 6710.7434 2	

********	******	********	******		*******		******
OUTPUT	VECTOR	RESIDUALS	(East,	North,	Height	- Local	Level)
*********	******	*********	******	******	*******	*******	*******

SESSION NAME	RE	RN	RH	- PPM -	DIST - STD -
	(m)	(m)	(m.)		(km) (m)
6530105 to 943020 (1)	-0.0012	-0.0019	0.0011	0.236	10.4 0.0048
6530105 to 962000 (1)	-0.0010	-0.0011	-0.0025	0.100	29.0 0.0063
6530105 to A459 (1)	0.0042	0.0082	-0.0010	0.522	17.8 0.0083
6530105 to A459 (2)	0.0035	0.0032	0.0046	0.370	17.8 0.0082
693053 to 6530105 (1)	-0.0010	0.0012	0.0013	0.113	18.1 0.0077
693053 to 943020 (1)	0.0005	-0.0033	0.0043	0.203	26.8 0.0085
693053 to 962000 (1)	0.0001	-0.0012	0.0116	0.250	46.8 0.0093
693053 to A459 (1)	0.0006	0.0017	-0.0045	1.391	3.5 0.0038
693053 to A459 (2)	-0.0006	-0.0016	-0.0002	0.489	3.5 0.0039
833001 to 6530105 (1)	0.0022	0.0014	0.0012	0.119	24.3 0.0067
833001 to 693053 (1)	-0.0039	-0.0020	0.0013	0.113	40.3 0.0100
833001 to 86u020 (1)	-0.0008	-0.0029	0.0027	0.105	38.4 0.0120
833001 to 86u020 (2)	-0.0013	-0.0005	0.0032	0.091	38.4 0.0098
833001 to 943020 (1)	0.0002	0.0018	-0.0025	0.126	24.2 0.0061
833001 to 962000 (1)	0.0005	0.0006	-0.0069	0.307	22.6 0.0059
833001 to 962000 (2)	-0.0009	0.0007	0.0020	0.102	22.6 0.0084
833001 to A458 (1)	-0.0011	-0.0019	0.0003	0.201	11.1 0.0078
833001 to A458 (2)	0.0009	0.0009	-0.0033	0.317	11.1 0.0080
833001 to A459 (1)	-0.0049	-0.0074	0.0086	0.320	38.6 0.0076
833001 to A459 (2)	0.0027	0.0082	0.0045	0.253	38.6 0.0146
833001 to A459 (3)	0.0042	0.0064	0.0022	0.205	38.6 0.0116
86u020 to 943020 (2)	0.0074	0.0044	-0.0008	0.177	49.0 0.0125
86u020 to 962000 (2)	0.0073	0.0024	0.0004	0.129	59.3 0.0136
86u020 to A458 (1)	0.0010	0.0006	-0.0040	0.134	31.0 0.0106
86u020 to A458 (2)	0.0021	0.0005	-0.0074	0.248	31.0 0.0110
86u020 to A459 (1)	-0.0032	-0.0060	0.0100	0.335	36.1 0.0119
86u020 to A459 (2)	-0.0037	-0.0063	0.0007	0.204	36.1 0.0097
943020 to 93u864 (1)	-0.0000	0.0063	-0.0072	0.449	21.3 0.0172
943020 to 93u864 (2)	0.0014	-0.0009	0.0025	0.140	21.3 0.0083
943020 to 962000 (1)	0.0006	-0.0013	0.0058	0.293	20.4 0.0137
943020 to 962000 (2)	0.0001	0.0007	-0.0038	0.188	20.4 0.0054
943020 to 962000 (3)	0.0002	-0.0016	-0.0049	0.254	20.4 0.0052
943020 to A458 (1)	-0.0011	-0.0023	0.0003	0.077	33.5 0.0104
943020 to A458 (2)	0.0009	-0.0028	0.0011		33.5 0.0111
943020 to A459 (1)	-0.0009	0.0038	-0.0004		27.3 0.0063
943020 to A459 (2)	0.0032	0.0101	0.0024		27.3 0.0122
943020 to A459 (3)	0.0051	0.0052	0.0019		27.3 0.0092
943020 to A459 (4)	-0.0051	-0.0091	0.0114	0.565	
962000 to 93u864 (2)	0.0001	0.0005	-0.0026		39.6 0.0103
962000 to 93u864 (1)	-0.0011	0.0031	-0.0028		39.6 0.0120
962000 to A458 (1)	-0.0010	-0.0007	0.0065		33.4 0.0104
962000 to A458 (2)	0.0000	-0.0022	0.0050		33.4 0.0111
962000 to A459 (1)	0.0004	0.0063	-0.0142		46.8 0.0087
962000 to A459 (2)	0.0184	0.0102	-0.0000		46.8 0.0176
962000 to A459 (3)	0.0022	-0.0027	-0.0020		46.8 0.0184
962000 to A459 (4)	0.0003	-0.0085	0.0039		46.8 0.0096
A458 to A459 (1)	0.0073	-0.0072	0.0071		41.4 0.0204
A458 to A459 (2)	0.0092	-0.0083	0.0046		41.4 0.0196
A459 to 93u864 (2)	-0.0004	-0.0083	0.0010		24.9 0.0175
A459 to 93u864 (1)	-0.0015		0.0059	0.324	24.9 0.0122
RMS	0.0040	0.0047	0.0050		

\$ - This session is flagged as a 3-sigma outlier

*********	*****	********	**********	***************	*****
CONTROL	POINT	RESIDUALS	(ADJUSTMENT	MADE)	
*********	*****	*********	**********		*****

STA. NAME	RE	RN	RH
6530105 693053 833001	0.0027 0.0168 -0.0193	-0.0105 0.0447 -0.0342	-0.0218
86u020 93u864 962000			-0.0049 0.0314 -0.0047
RMS	0.0148	0.0331	0.0194

OUTPUT STATION COORDINATES (LAT/LONG/HT)

STA_ID	LATITUDE	LONGITUDE ELLHGT -
6520105	45 21 28 76264	-75 27 01 42240 62 2522

6530105	45	21	38.76364	-75	37	01.42340	62.3532	
693053	45	14	34.16547	-75	27	30.11428	70.2434	
833001	45	23	55.94936	-75	55	20.13843	43.9130	
86u020	45	03	14.29118	-75	53	07.35310	90.1521	
93u864	45	25	34.56319	-75	21	15.56334	50.6134	
943020	45	27	14.96200	-75	37	25.76425	83.5516	
962000	45	35	06.05166	-75	48	26.36349	236.0113	
A458	45	19	08.48078	-76	00	23.02449	83.0326	
A459	45	13	33.20075	-75	29	43.07762	54.4266	

*********	*********	*******
OUTPUT	VARIANCE/CO	VARIANCE
*********	*********	**************
		2
STA_ID	SE/SN/SUP	CX matrix (m)
	(95.00 %)	(not scaled by confidence level)
	(m)	(ECEF, XYZ cartesian)
6530105	0.0283	1.4882e-004
	0.0283	-5.8819e-005 3.6388e-004
	0.0614	6.1293e-005 -2.4003e-004 3.8472e-004
693053		1.4898e-004
	0.0283	-5.9028e-005 3.6456e-004
	0.0615	6.1492e-005 -2.4065e-004 3.8512e-004
833001		1.4888e-004
	0.0283	-5.8915e-005 3.6416e-004
	0.0614	6.1393e-005 -2.4033e-004 3.8491e-004
86u020		1.5075e-004
		-5.9093e-005 3.6661e-004
	0.0615	6.1179e-005 -2.4026e-004 3.8665e-004
93u864		1.5150e-004
		-5.9503e-005 3.6793e-004
	0.0616	6.1181e-005 -2.4046e-004 3.8907e-004

943020	0.0284	1.4894e-004 -5.8740e-005 3.6354e-004 6.1146e-005 -2.3945e-004 3.8428e-004	
962000	0.0284	1.4913e-004 -5.8637e-005 3.6329e-004 6.1052e-005 -2.3905e-004 3.8378e-004	
A458	0.0285	1.5011e-004 -5.9362e-005 3.6666e-004 6.1583e-005 -2.4126e-004 3.8754e-004	
A459	0.0283	1.4883e-004 -5.8765e-005 3.6355e-004 6.1199e-005 -2.3960e-004 3.8415e-004	

VARIANCE FACTOR = 1.0002
Note: Values < 1.0 indicate statistics are pessimistic, while
values > 1.0 indicate optimistic statistics. Entering this
value as the network adjustment scale factor will bring
variance factor to one.

Appendix C

Unusable Monuments

Points that we went looking for and were not found, destroyed or not used because there were in poor GPS locations.

00119773030

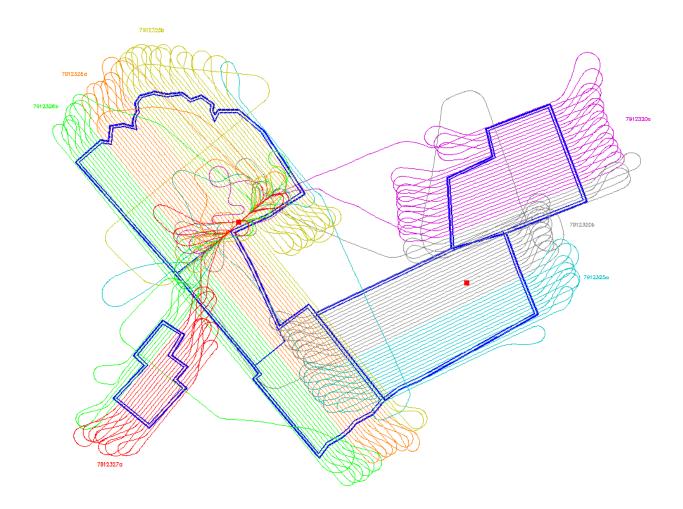
This point may still exist, but if it does, it's under a log pile. Either way, it's not usable.

0011986u017

Again, located but unusable for GPS due to tree cover.

0011986u144 Located, but unusable due to tree cover (and a poor setup).

01919680197 (AKA 6530197 by NRCAN) Location of published coordinates puts it under a road.



00819758197

Located but not usable. Had I read the description I would have seen that it was located in a vertical rock face.

Appendix D

Missions Map and Flight Logs

1 15	Aircraft 2088	CEARO	System	Leica ALS 70	70	Additional Notes	lotes			A I R B O R N E
OTTAWA	Pilot CHTIC Manager	CHER Maneral	INU	7179 Honevwell Micro IRS	Micro IRS	L UNDE DEWS		NUT KUBT ON R	on Purse of CM	2 0 N I 0 X
Mission Objective Start AU BLOCK	5	ALM PROP	GPS Rx	NovAtel OEMV	MV					
			GPS Rx							
			Data Drive	2						
Aircraft Block Time				Mission	n Plan			1	GPS Time	æ
Engine On 15:05 Ramp Out	Takeoff / S	15:22	AGL Height	m 0.08/	Pulse Rate 250	1	KHz	Static Alignment	Start	End
Ramp In	Landing 19	147	Target Speed	160 kts	Scan Rate	42	뷮	Pre Mission	15:13	15:19
Total hrs	Total 4.4	hrs	Laser Current	100 %	FOV	42 De	Deg's	Post Mission	19:49	9:54
LIDAR	Fight	GPS	GPS Time	Line A	Line Aborted					
File Name	Direction	Start	End	Time	nmi to End	MISSI	MISSION LD		Comments	
791232001	223	15:29	15:30			152	2952	- 140 Kts	0 1700	MAL
02	048	15.25	15:36			153	3555	ILIS KIS	e 1650	MAGL
03	069	15:46	15:48			154	54608			
40	249	5:54	15:57			155	55425			
20	069	16:02	10:91			160	60201			
00	249	16:09	16:12			160	160934			
40	069	16:16	16:19			161	1634			
20	249	16:23	16:26			16	2324	+		
60	069	16:30	16:33			163	3018	-		
10	249	16:37	16:40			163	3700	0		
11	069	16:45	16:50			164	64545			
12.	249	16:54	16.58			165	5405			
10	069	17:02	17:07			17C	70254	+		
14	249	17:11	17:16			r	1110			
5	069	101.2	17.74			0111	2 D			

Pg | of 2

										•	
Date 20/2	11 15	Aircraft 2088	BR CFARD	System	Leica ALS 70		Additional Notes	8			0
Project [370	ALATTO	Plot CHEIS	吉	Unit	7179					A M I	
Location CARP	an cyrr	Operator T	SUMMER	IMU	Honeywell Micro IRS	ticro IRS					
Mission Objective				GPS Rx	NovAtel DEMV	M					
				GPS Rx	NA						
				Data Drive	2 8						
	Aircraft Block Time				Mission	Mission Plan		Ct-ti- Me		GPS Time	emi
Engine On	Ramp Out	Takeoff (5:22	AGL Height	800 m	Pulse Rate 2	ZSO KHz	oratic Augmment		Start	End
Engine Off	Ramp In	Landing	-	Target Speed	160 kts	Scan Rate	42 Hz	Pre Mission	_		
Total hrs	Total hrs	Total	hrs	Laser Current	5 00	FOV	42 Deg's	Post Mission	_		
Pilohe Lao	LIDAR	Flight	GPS	GPS Time	Line Aborted	ported					
Fight Line	File Name	Direction	Start	End	Time	nmi to End	Mission ID		Com	Comments	
97	791232016	249	17:2'8	17:33			18241	T			
98	17	069	17:37	14:41			00255706	00			
66	10	249	17:45	17:51			17454	81			
100	19	068	17:54	17.59			8 H H S Z I	48			
1.01	20	249	18:03	18:09			18033	35			
102	21	068	18:12	18:17			18124	TH-			
103	22	249	18:21	18:26			1821	tz			
104	23	068	18:30	19.35			18304	25			
105	24	249	18:39	18:45			1839	134			
106	25	0/8	18:48	18:54			(848)	558			
£ 01	26	249	18:57	19:03			85.				
108	27	068	19:67	19:12			1907	10			
109	200	249	19:16	19:21			1916	£2.			
CYRP CALIB	29	728	19:30	19:31			1930	25 140	KK P	1700	M. B.
100 ru.k	ON	810	10.20	19.21			1000	10	Γ.	1-118	

	G YIRI					Rog				••••
Date 2012 NOV	15	aft CZC	8 C-FARG		Leica ALS 70	0	Additional Notes		A	AIRBORNE
Project 1370 07"	OTTAWA	Pilot C	R055	Unit	7179				9	M Y O I M
Location CYRP CA	CARP, ON	Operator 72	TRITHARDT	IMU	Honeywell Micro IRS	Micro IRS				
Mission Objective				GPS Rx	NovAtel OEMV	MV				
				GPS RX						
				Data Drive	Ve 4					
A	Aircraft Block Time				Missio	Mission Plan		Ctotic Alicement		GPS Time
Engine On 2056	Ramp Out	Takeoff 2	2110	AGL Height	(800 m	Pulse Rate	250 KHz	Static Alightment	Start	End
	Ramp In	Landing o	£120	Target Speed	160 kts	Scan Rate	4/2 Hz	Pre Mission	2102	2/07
Total 5.5 hrs	Total hrs	Total 5	hrs	Laser Current	100 %	FOV	42 Deg's	Post Mission	0218	0223
	LIDAR	Flight	GP	GPS Time	Line A	Line Aborted				
Flight Line	File Name	Direction	Start	End	Time	nmi to End	Mission ID		Comments	
CAL CYRP 7	7912 52031	228	2120	2120			12115-212	21115-212006 1680 mAGLC	166@ 130	Kts.
CAL CYRP	32	048	2125	2126			212538	1691	MAGIE 128	Kts .
110	M 01	068.4	2134	2139			213406	. 0		
111	34	248.6	2144	2150			214442			
112	35	068.4	2154	2159			215412			
113	36	248.6	2203	2209			220334	4		
114	37	068.4	2213	2218			221300	0		
115	00 M	248.6		2228			222215	10		
X TIE AREA3	N)	159	2236	2241			223610			
10	40	244.2	2246	2254			224626	.0		
52	112	063.9	2257				225750	0		
53	42	244.2	2309	2317			230937			
54	24	063.9	2321	2328			232114			g
55	hh	244.2	2332	2340			233240	0		
510	75	063.9	2244	1251			234400			

64

						>			•	•
Date 2012 N	NOV 15	Aircraft C208	S C-FARG	System	1 Leica ALS 70	0	Additional Notes		• •	RBOR
Project 1370 O	OTTAUAA	Pilot C. R	R055	Unit	7179				8	I M A O I N O K
0	CARP ON	Operator 7. TR ITH ARDT	R ITHARD	IMI	Honeywell Micro IRS	Micro IRS				
	1			GPS Rx	X NovAtel OEMV	MV				
				GPS Rx	×					
				Data Drive	trive 4.					
	Aircraft Block Time				Missio	Mission Plan		Ctatic Alicomant	GPS	GPS Time
Engine On 2051	Ramp Out	Takeoff Z110	0	AGL Height	B00 B	Pulse Rate	250 KHz		Start	End
Engine Off 0226 Ramp In	Ramp In	Landing 0217	14	Target Speed	160	+	42 Hz	Pre Mission	2102	2107
Total 5.5 hrs	Total hrs		hrs	Laser Current		FOV	42 Deg's	Post Mission	0218	
		Product of	de	GDS Time	l ine A	I ine Aborted				
Flight Line	File Name	Direction	Chod	End	Time	numi in Crud	Mission D		Comments	
+			tipic	2	+					
25	791232046	2#1.2	23555	0003			12/115-235512	12		
00	47	063.9	0000	100			000643			
59	2 11	244.2	100	0025			001756	0		
60	64	063.9	0029	0036			002915			
19	60	244.2	0400	2400			004002			
62	15	0.490	0021	0058			00514			
63	52	244.2	0102	010			010202			
19	N) V)	0.4.0	0113	0/20			011300			
65		244.2	0123	0130			012324			
66	55	0.490	0134	140			013410			
29	56	244.2	0144	0152			014443			
CAL CYRP	5	048	0202	0203			020239	1710 MAGL	12 131	K4s
	5	228	5020	0208			212070	1700 m AGL@	10 137	Xt3

Pg 2 of 2

Julian Day 325	Flight A			LID/	LIDAR Flight Log	t Log					
	11 20 OTTAWA	Aircraft 2088	R CFARC		Leica ALS 70 7179	0	Additional Notes Pruse Restlink reb DARK 41:30	8.8	TO DAY THANG FUCAT	0	A LR B O R N E
Mission Objective	CH CYEP ON LINE	Operator 7	CENTRA	GPS Rx	Honeywell Micro IRS NovAtel 0EMV	Micro IRS MV					
		2		GPS Rx Data Drive	9		FRMS W 7	power of		ערט , ראנגע אחרוב צואר אוצאאן	NC PERTARI
	Aircraft Block Time				Mission	n Plan				GPS	GPS Time
Engine On 17:34	Ramp Out	Takeoff -	1.55	AGL Height	and m	Pulse Rate	250 KHz	Sta	Static Alignment	Start	End
Engine Off 22:07		114_	N Se	Target Speed (60					Pre Mission Post Mission	24:21	17:51
							11			10.15	10.00
Flight Line	LIDAR File Name	Flight Direction	Start	GPS Time End	Line A Time	Line Aborted e nmi to End	Mission ID	0		Comments	
CARP CALLE 7	791232501	048	18:09	18:10			180939	5	I40 KI	60071 g	MACL
CYRP CALLIC	02	228	11:81	18:15			181453	22	ISO Krs	C 1700	MACL
68	03	064	18:23	18:30			18234				
69	40	244	18:35	18:42			83522	22			
70	05	064	18:46	18:54			184642	42			
12	06	244	18:58	(9:05			1858	5850		2)	
72	07	064	9:10				0061	110			
at	08	244	12:61	19:28			1921	t2			
74	60	064	19:32				193243	93			
75	10	244	19:43				194348	848			
76	11	064	19.54	20:01			195452	152			
££	12	244	20:06	20:12			200624	420			
78	[3	1064	20:16	20:24			201652	52			
bt	14	244	20:27	20:34			20275	755			
00	V	ALL.	00.40				00000	500			

Pg | of 2

66

	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		End] [1	51		
	• V 	GPS Time	Start				comments							@ 1750 MACL	C17854464		
			Static Alignment	Pre Mission Post Mission			5							14514	145 K/13		
	Additional Notes		KHz	Hz Hz]	Minister ID	MISSIOI ID	204852	205842	210800	21435	212305	213624	144210	214458		
Log		Plan	Pulse Rate 250	Scan Rate 42 FOV 42		orted	nmi to End										
LIDAR Flight Log	Leica ALS 70 7179 Honeywell Micro IRS NovAtel DEMV WÁ	Mission Plan	1800 m	100 % Kts		Line Aborted	Time										
rid/	System Unit GPS Rx GPS RX Data Drive		AGL Height	Target Speed Laser Current		GPS Time	End	20:55	21:04	21:12	21:19	21:26	21:34	2138	2145		
	2088 CFARA			S		GPS	Start	20:48	20:58	21:08	21:14	21:23	21:30	2133	21:44		
	Aincraft 2088 Pilot C, MA		Takeoff [7:55	Total A/20		Flight	Direction	244	064	244	334	320	0H	228	240		
Flight A	11 20 OTTAWA CYRP	Aircraft Block Time	Ramp Out	Ramp In Total hrs		LIDAR	File Name	791232516	1-1	18	61	20	21	22	23		
Julian Day 325	Date 20)2 Project 1370 Location Care? Mission Objective	Air	17:34	Engine Off 22:03 R Total 4, C hrs T	1	Flinht Line		81 79	82	83	ROOK2 X THE	20	49	CYRP CALIB	CYRP CAUG		

Pg 2 of 2

67

Alicentic 2:08 C-FARQ System Letica ALS 70 Addition Plot R0<55 Umin< 7179 Addition Plot R0<55 Umin 7179 Addition Operation TRC17HARD EPIS Rx NovAleIOERIV Addition Operation TRC17HARD EPIS Rx NovAleIOERIV Addition Operation TRC17HARD EPIS Rx NovAleIOERIV EPIS Rx Operation TRC17HARD EPIS Rx NovAleIOERIV EPIS Rx Operation TRG15 MISSION Plote Addition Tableoff AGL Honeywell Micro RS Addition 23 Tableoff AGL MISSION Plote Addition Tableoff AGL AGL AGL Addition Tableoff AGS AGR AGR Addition Tableoff AGS AGS AGR AGR Tableoff AGS AGS AGR AGR Tableoff AGS <	Image: Plot System Leica ALS 70 Plot Noreaft: 2:08 C-FAR Q Noreaft: 2:08 C-FAR Q Plot Ross System Leica ALS 70 Plot Ross Unit<7173 Operator Ross Nu Image: Ross Nu Honeywell Micro IRS Operator Ross Nu Image: Ross Nu Honeywell Micro IRS Image: Ross Nu Honeywell Micro IRS Image: Ross Ross Nu Image: Ross Nu Honeywell Micro IRS Image: Ross Ross Nu Image: Ross Nu Honeywell Micro IRS Image: Ross Ross Nu Image: Ross Nu Honeywell Micro IRS Image: Ross San Rete Landing 0355 Image: Specific Specific Specific Fight / Boon Image: Ross Ross Ross Image: Ross Ross Ross Image: Ross Ross Ross Image: Ross	9999999 99999	Additional Notes A I R B O R N E	Static Alignment GPS Time	Hz Pre Mission	Deg's Post Mission 035(Mission ID Comments	21120-230238 1780 mAGLE 140. Kts	230720 1770 mAGI@ 137 Kts		232240	233044	233928	234807	235703	-000554	001514	002440	0034/17	004338	005312	
LIDAF System Unit MU MU GPS Rx GPS Rx GPS Rx GPS Rx GPS Rx GPS Rx GPS Rx GPS Rx GPS Rx Current Laser Current Laser Current Laser Current 2303 2353 2353 2353 2353 2353 2353 2353	Ight B LIDAF 0 Aircraft: 2:08 C-FARQ System 0 Aircraft: 2:08 C-FARQ Ium 0 Aircraft: 2:08 C-FARQ Ium 0 Aircraft: 2:08 C-FARQ Ium 0 Operator TR: TriADDT Ium Ium 0 Operator TR: TriADDT Electratic Electratic 0 Init Rooss Ium Ium 0 Taget Speed Ium 0 Inection Start End 0 Inection Start End 0 2320:1 233:03 232:33 2 322:0:1 233:03 232:33 2 23:33 23:33 23:34 2 23:33 23:34 23:35 2 23:34 23:34 23:34 3 23:23 23:34 23:35 3 23:35 23:35 23:35 3 32:30:1 23:34 23:35 <td>Elight Log</td> <td></td> <td>on Plan</td> <td>Pulse Rate Scan Rate</td> <td>% FOV #</td> <td>Line Aborted</td> <td></td> <td>1211</td> <td></td>	Elight Log		on Plan	Pulse Rate Scan Rate	% FOV #	Line Aborted		1211														
	Ight B Aircraft: 2:08 C-FARQ 0 Aircraft: 2:08 C-FARQ 0A Dilot RoSS 0A Operator TR: TrHA20T 0A Takeoff 2254 0a Landing 0355 In In Landing 0355 In In Landing 0355 In In Landing 0355 In SAC 2224 220 23 2320:1 2334 23 2320:1 2334 23 320:1 2334 23 320:1 2334 23 320:1 2334 23 320:1 2334 23 320:1 2334 23 140:0 2334 23 140:0 2334 23 140:0 2334 23 140:0 2334 23 1239:9 0015 23 140:0 2334 23 140:0 2349 <td< td=""><td>LIDAR</td><td></td><td>-</td><td></td><td></td><td>ime</td><td>End</td><td>2303</td><td>2308</td><td>2318</td><td>2327</td><td>2335</td><td>2344</td><td>2353</td><td>0002</td><td>00 </td><td>00200</td><td>0030</td><td>0040</td><td>0049</td><td>0.059</td><td></td></td<>	LIDAR		-			ime	End	2303	2308	2318	2327	2335	2344	2353	0002	00	00200	0030	0040	0049	0.059	
Aircraft/: 22 Pilot R Operator 7/6 Detrator	ight 8 ight 8 0 0 0 0 0 0 0 0 0 0 0 0 0		8 C-FARQ 055 017HNEDT			90	GPS T	Start	2302	2307	2314	2322	2330	2339	2348	2357	0005	2002	0024				ŀ
	ight 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		AircraftC-220 Pliot R Operator 778		Landing o	Total 5.0	Flight	Direction	228	048	320.	140.0	320.1	140.0	320,1	140.0	320.	139.9	320.1	139.9	320.1	(39.9	

Pg of 2

Bits Control Statem Lite Additional Notes Additional Notes Additional Notes Presentin	Julian Day 325	Flight B			L	LIDAR Flight Log	t Log				00 ⁰⁰	
Image: Constraint of the	27	0	Aircraft C.Z.D. Pilot D	B C-FARG			70	Additional Noles		• <9	IRBOR	
GPS Rx NovAtel CENVGFS RxGFS RxGFS RxGFS RxGFS RxGFS RxGFS RxGFS RxMission PlanI allocifi 2254Mission PlanNote RateI allocifi 2254AGL HeightI allocifi 2254I allocifi 2353AGL HeightI allocifi 2254I allocifi 0 3255Mission DNote RateI allocifi 0 3257SantLine AbortedMission DSantEndAllo320-LD122Allo2122D149Allo320-LD122Allo2122D149Allo320-LD122Allo2122D149Allo220-LD149Allo220-LD149Allo220-LD149Allo220-LD149Allo220-LD149Allo220-LD149Allo220-LD149Allo220-LD149AlloD122D149AlloD122D149AlloD122D149AlloD122D149AlloD122D149AlloD122D149AlloD122D149AlloD122D149AlloD122D149AlloD122D149AlloD122D149AlloD122D149AlloD122D149AlloD223D249AlloD240D2303	ARP	No	Operator 7/8	TUARDT	NI	Honeywell	Micro IRS			Į		
det Drive Control Control <th co<="" colspa="2" th=""><th></th><th></th><th></th><th></th><th>GPS F</th><th></th><th>EMV</th><th></th><th></th><th></th><th></th></th>	<th></th> <th></th> <th></th> <th></th> <th>GPS F</th> <th></th> <th>EMV</th> <th></th> <th></th> <th></th> <th></th>					GPS F		EMV				
					Data	æ						
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	ircra	ft Block Time				Missic					S Time	
	Ram	p Out	Takeoff 22	254	AGL Height	1800 m	-	1	Static Alignment	Start		
Image: Normalize for the set of	Ram	p In	Landing O	355	Target Speel		-		Pre Mission	E#62	2252	
Image: Fight fight bedoned Image: Fight fig	Tota			0	Laser Currer				Post Mission	0356	0401	
Time Direction Start End Time mmi to End Mission ID Comments 533 139.9 01/2 01/9 7 12/12.012444 Comments 4/0 320.1 0122 01/9 7 12/12.012444 Comments 4/1 139.9 01/2 01/9 7 0/2236 0 4/2 320.1 01/2 01/9 7 0/12/47 7 4/2 320.1 01/2 01/9 7 0/12/47 7 4/2 320.1 01/2 01/9 0 01/2/27 7 4/3 139.9 01/2 01/2/27 01/2/27 7 7 4/3 139.9 020/2 02/244 02/22/2 02/24/2 7 7 4/4 320.1 020/2 02/24 02/22/2 7 7 4/4 139.9 02/2 02/2 02/2 7 7 7 4/4 320.3		LIDAR	Flight	GP	S Time	Line /	Aborted					
534 139.4 61/2 019 1211.01244 40 320.1 0122 0132 0132 0132 41 139.9 0132 0132 0132 013239 42 320.1 0142 0149 013239 014247 43 320.1 0142 0149 013239 014247 43 320.1 0142 0149 014247 014247 43 320.1 0142 0149 014247 014247 44 320.1 0202 0209 014247 014247 47 139.9 0152 0149 014247 014247 47 139.9 0202 0209 020242 0205242 46 320.3 0230 0244 021252 02126 47 139.9 0212 0224 0212630 0214609 48 320.3 02306 03227 0234909 032416 130 49 2	Ē	le Name	Direction	Start	End	Time	nmi to End	Mission ID		Comments		
320.1 D122 0.128 0.128 0.128 139.9 0132 0139 0123 0139 2 320.1 0142 0149 012238 2 320.1 0142 0149 014247 3 139.9 0152 0159 014247 3 320.1 0202 0209 014247 320.1 0202 0209 014247 014247 320.1 0202 0209 0212232 014247 320.1 0202 0209 021232 020242 320.1 0202 0234 021232 020303 139.9 0212 02240 0213030 021836 139.9 0302 02302 0218369 023030 230.1 0302 0302 023030 0218369 230.1 0314 0313 032068 032746 230 0314 034409 1380 MAGLE 132 049 0344 03440	912		139.9	0112	6110			1 1	171			
139.9 0.132 0.139 0.132 0.139 0.13239 0.13239 2320.1 0.142 0/49 0 0/4247 0 0 139.9 0.152 0/59 0 0 0 0 0 139.9 0.152 0/59 0 0 0 0 0 139.9 0.52 0202 0204 0 020242 0 0 139.9 0212 02260 020242 022330 020242 0		40	320.1	0 22	0128			0/2238				
2 320.1 0142 0149 014247 014247 139.9 0152 0159 01521 01521 139.9 0152 0159 01521 01521 139.9 0152 0202 0209 01521 139.9 0212 0202 0244 021232 139.9 0212 02240 021632 021632 139.9 0212 02302 0244 021632 139.9 0212 02303 021632 021632 139.9 02306 0302 0244 023030 021636 139.9 02306 0322 021636 023030 021636 0230568 230.0 03241 03246 032460 032460 1780 MIGLE 136 230.0 0344 034609 1780 MIGLE 132 034609 132 230.0 0344 034609 1780 MIGLE 132 034609 132		117	139.9	0132	0139			013239				
139.9 0152 0159 0152 0159 1320.1 0202 0203 02024 020242 133.9 0212 02024 021232 133.9 0212 02240 021232 133.9 0212 02240 021232 133.9 0212 023030 0213030 139.9 0214 0214509 0214509 139.9 0214 02246 0224506 139.9 0214 0322 0306 220.3 0324 0341 03413 228 0346 03413 1380 228 0346 03413 1380		42	320.1	0142	0149			014243				
320.1 0202 0209 02.032 139.9 0212 0226 02.0242 320.3 0230 0244 02.2330 320.3 0230 024909 021830 139.9 0248 0202 024809 139.9 0248 0302 024809 139.9 0248 0302 024809 139.9 0302 0302 024809 230.3 0306 03220 030608 230.3 0304 03274 0344 048 0341 0341 1790 MIGLE 136 210 0344 0344 0344 1380 MIGLE 132 210 0344 0344609 1380 MIGLE 132		54	139.9	0152	0159			015251				
5 139.9 0212 0226 0216 021232 320.3 0230 0244 023030 023030 139.9 0248 0302 024909 023030 139.9 0206 0302 024909 023050 230.3 0306 0329 0304 0306 230 0324 0324 03040 03040 230 0324 0334 03040 03040 230 0341 0341 03413 1780 mHGLC 228 0346 03440 034405 132		hh	320.1	0202	6020			020242				
320:3 0230 0244 023030 139.9 0248 0302 024809 139.9 0248 0302 032406 320.3 0306 0322 0306 230 0327 0334 03046 230 0341 0341 032716 210 0341 0341 032716 226 0346 03413 1790 mHGLC 136 k 228 0346 03460 1780 mHGLC 136 k		45		0212	0226			021232				
139.9 0248 0302 024809 024809 320.3 0306 0320 0320 030608 230 0324 0334 030402 136 210 0341 0341 0341 1390 210 0341 0341 0341 1380 228 0346 03460 1380 1380		416		0230	0244			023030				
320.3 0306 0320 0306 0320 230 0327 0334 032716 1790 mMGLC 136 k 048 0341 0341 3 1380 mMGLC 136 k 226 0346 0346 034609 1780 mMGLC 132 k		64		0248	0302			024809	-			
230 0327 0334 032716 1790 mHGLC 136 k 048 0341 0341 0341 3 1790 mHGLC 136 k 228 0346 0346 03460 1780 mHGLC 132		48	320.3	0306	0320			030608				
048 0341 0341 0341 03413 1790 MMGLE 136 k 228 0346 0346 0346 034609 1780 MMGLE 132		64	230	0327	0334			032716				
228 0346 0346 034609 1780 mAGLE 132		20	040	0341	0341			034113	HW OLL	136	K43	
		51	228	0346	0346			034609	1780	132	kts	

Pg 2 of 2

989999. 98999.	AIRBORNE AUNACINALO	ind, cal.			GPS Time	Start End	55 14	19:42 19:47		comments	T @ 1700 which	C MOD												@ 155 ms all	e 165 Krs 21
	r MAP	and a service			are at	static Alignment	Pre Mission	Post Mission			ISO KH	150 K									-				
	Additional Notes					2CO. KHz	다고 보	s,6eq 2 ∱	Ci solicita	UI LIDISSIM	145118	145732	150850	152706	154618	160350	162212	163932	165729	171432	1732271	174932	180732	182429	184215
t Log	0 Micro IRS	MV			n Plan	Pulse Rate	+ +	FOV	Line Aborted	nmi to End															
LIDAR Flight Log	Leica ALS 70 7175 Honeywell Micro IRS	NovAtel OEMV	NA	2	Mission	1 200 m	160 kts	100%	Line A	Tine															
LIDA	System Unit IMU	GPS Rx	GPS Rx	Data Drive		AGL Height	Target Speed	Laser Current	me	End	14:52	14:57	15:22	15:41	16:00	16:18	16:35	6:54	11:21	62:t1	17:46	18:64	18:21	18:39	18:55
	R 208 CFARG CHRIS MATHICAN	ret				. 43 AC		hrs	GPS Time	Start	14:51	14:57	15:08	15:27	15:46	16:03	16:22	16:39	16:57	17:14	17:32	bhit	18:07	18:24	124:81
	Aircraft 20% B Pilot CHRIS P	purching energy				Takeoff 1	Landing [7]	Total 4.9	Flight	Direction	228	048	140	320	140	320	140	320	140	326	140	320	140	320	140
Flight A	11 Z OTTRUA	LING			Aircraft Block Time	Ramp Out	Ramp In	Total hrs	LIDAR	File Name	791252601	02	03	HO	05	00	40	80	50	10	11	12	(3	14	15
Julian Day 326	Date 2012 Project 1330 Location CAR P 01	Mission Objective START			A	Engine On 14:24	10 10 10 E	Total 5, 5 hrs	Eliobet I Inco	DUN TURIL	YRP CAUB 79	XRP CNIB	25	24	23	22	21	20	6	80	E1	16	2	7	13

Pg) of Z

70

Julian Day 3 26	Flight A				LIUAR FIIGHT LOG	t Log				
Date 2012 Project 1370 Location CAP 0 Mission Objective	DITANA OTTANA	Aircraft 205 Pilot C	Aircraft 2083 GFAEO Pilot C. MARRISCON Operator T. Con Duran	System Unrit GPS Rx GPS Rx Data Drive	Leica ALS 70 7179 Honeywell Micro IRS NovAtel OEMV LVÅ	70 Micro IRS EMV	Additional Notes		• <5	
	Aircraft Block Time				Missio	Mission Plan		Static Alignment	GPS	GPS Time
	Ramp Out	2	1.43	AGL Height		-	n n	The second	001	End
Engine Off / 9.54	Total hrs	Total 4/.	9:59 9 hrs	Target Speed Laser Current	100 %	Scan Rate FOV	4.2 Hz 4.2 Deg's	Pre Mission Post Mission	1942	1947
PRIMA LAN	LIDAR	Flight	GPS	GPS Time	Line A	Line Aborted				
right Line	File Name	Direction	Start	End	Time	nmi to End	MISSION ID		Comments	
12 7	791232616	320	18:58	19:13			185857			
CYRP CALIR	41	228	19:22	19:22			19220	1 14OK	2651 2	MALL
XFP CAUD	18	048	19:26	92:61			192600	0 150 Kg	J	

Pg 2 of 2

	0 1161 - D			ī		r rvy				
Date Zo12 Nov Z Project 1370 OT Location CYRP CARP Mission Objective	ON ZI OTTAWA CARP ON	Aircraft/2208 C-FARG Pilot ROSS Operator TRITHARDT	208 C-FARD ROSS	System Unit IMU GPS Rx GPS Rx Data Drive	Leica ALS 70 7179 Honeywell Micro IRS NovAtel OEMV	70 Micro IRS :MV	Additional Notes	INIT FAILURE TRIGGER		A I R B O R A N A G I N
	Aircraft Block Time				Mission	on Plan			GPS	GPS Time
Engine On 2024	Ramp Out	Takeoff 2045	545	AGL Height	(800 m	Pulse Rate	ZSO KHZ	Static Alignment	Start	End
Engine Off 0144		Landing O(0134	Target Speed	160 kts	Scan Rate	HZ H2	Pre Mission	2030	2043
Total 5,3 hrs	Total hrs	Total 4,8	S hrs	Laser Current	100 %	FOV	42 Deg's	Post Mission	0136	0141
and the second	LIDAR	Flight	GPS	GPS Time	Line A	Line Aborted				
rign Line	File Name	Direction	Start	End	Time	nmi to End	MISSION ID		Comments	
CAL CYRP	791232619	228	2055	2055			121121-205510	1 BoomAGLE	@ 134	kts.
CAL CVRP	20	048	2100	2101			210016	1790 MAGLE	12 138	kts.
-	21	139.8	2111	2125			211140			
01	22	320,2	2129	2143			212921			
9	23	139.8	2147	220			214728			
00	24	320.2	22.05	22.19			220504			
14	25	139.8	22.23	2236			222310			
9	26	320.2	2240	2254			224045			
5	27	139.8	2258	2311			22580			
4	28	320.2	2315	2329			231526			
ы	29	139.8	2332	2346			233248			
2	30	320.2	2350	4000			235000			
_	31	139.8	5000 t	0021			121122_000736	36		
TIE AREA 4	32	308	0029	0033			002944			
411	40	0 0.0	~~	-			1000			

Pg of A

Alicraft/C2b6 CFA6 Pilot Ross Operator Tk.ITHAR Landing 0134 Landing 0134 Direction Start 038.2 004 218.2 004 218.2 004 038.1 005 218.2 004 228 011 228 012	LIDAR Flight Log	System Unit	GPS Rx	GPS Rx Deta Drive /	Mission Plan Control Mission	AGL Height 1800 m Pulse Rate 250 KHz Statt Angmittent Start End	Target Speed 1 60 kts Scan Rate 42 Hz Pre Mission 2038 2043	Laser Current 100 % FOV 42 Deg's Post Mission 0136 0141	Line Aborted	End Tine nmi to End mission ID Comments	0045. 121122_004352	0053 004913	0059 005616	0107 010326	0114 011044	0119 011835 1800 MGLC 135 K/s	0124 012325 1810 mAGLE 130 Kts.				
Tarkeoff 2045 Landing 0.134 Total 4.8 hrs Flight 0.38.2 Direction start 0.38.1 0.05 218.2 0.04 218.2 0.04 2048 0.118 228 0.121 228 0.121	System Unit GPS Rx GPS Rx	GPS RX GPS RX	GPS Rx	Data Drive	Mission Plan	800 m	60 kts	100 %	GPS Time Line Aborted	Tine	-	-+	-	-		-	-				
ZI TTAWAA RP, ON RP, ON Inp ln Inp ln tal 232.6 232.6			OPERAICULATHAR		Aircraft Block Time	Takeoff 2.0 45		Total +	Flight	Direction	-	_		218.2	_	048	228				

Pg 2 of 2

	C light A				LIDAK Flight Log	t Log				•••
Date 2012 1	11 22	Aircraft 2088	E CFARD	System	Leica ALS 70	20	Additional Notes			
Project 1370	OTTAWA	Pilot CHPIS	Re.	Unit	7179		RESTRETED	sts row		
Location CARP ON	U. CYRP	Operator 7	SLAUPUE	IMU	Honeywell Micro IRS	Micro IRS	BEFORE PL	FLGHT		
Mission Objective	上市	G 22)	135	GPS Rx	NovAtel OEMV	MV	20	11 IN OTTANA	tuA	
	FINGH	PROJECT	AREA	GPS Rx	MA		ALS EREOR	· · /	WILLING LAR	
	Time - 1 - a			Data Drive			FIRE MODE	EUT RY	STRET PA	52
4	Aircraft Block Time				Mission	n Plan			GPS Time	Time
Engine On / 6; 34	Ramp Out	Takeoff //	16:55	AGL Height	1 8 co m	Pulse Rate	ZEC KHz	Static Alignment	Start	End
Engine Off 7:23	Ramp In	Landing c	3	Target Speed	(60 kts	-		Pre Mission	16:44	16:00
Total 2.9 hrs	Total hrs	Total 2		Laser Current	\$ 001	FOV	s,Beg 2 h	Post Mission	19:15	9:20
Elinki Lino	LIDAR	Flight	GPS Time	Time	Line A	Line Aborted				
igin crite	File Name	Direction	Start	End	Time	nmi to End	MISSION ID		Comments	
CYRP GALIS 7	791252701	048	17:02	17:03			170204	150 KICI	1260 @ "	in Mal
YRP CALIB	02		17:07	17:08			15 2021	Krs	1	C.m. Act.
22	03	2.18	17:13	たいたい			171302	140 KK		
23	οH	038	17:51	17:25			2012t1	NE KN		
24	20	218	17:29	17:33			172946			
25	90	0	17:37	14:21			173755	10		
26	07	218	17:45	17:49			174547			
27	30	038	17:53	17:56			175340			
28	09	218	8:00	18:03			186025			
29	(0)	038	18:07	18:10			1802274			
30	11	218	18:14	18:17			19142			
31	12	038	18:21	18:24			-			
32	13	218	18:28	18:31			182840			
33	14	038	18:35	18:38			183550			
217	2	210	0.00	1001			101120.			

Pg) of 2

Julian Day 327	₹- Flight A			rid/	LIDAR Flight Log	t Log			••.	
Date 20, 2 Project 1370 LocationCNRP 0 Mission Objective	PUNTTO C	Aircraft 2088 Pilot C Mil	B CFAR 9 MANTISON Servicia	System Unit IMU GPS Rx GPS Rx Data Drive	Leica ALS 70 7179 Honeywell Micro IRS NovAtel OEMV VÅ	70 Micro IRS MV	Additional Notes		• • •	A I R B O R N E
	Aircraft Block Time				Missio	Mission Plan		14 - June 14	GPS Time	me
Engine On	Ramp Out	Takeoff		AGL Height	1800 m		250 KHz	static Alignment	Start	End
Engine Off Total hrs	Ramp In Total hrs	Landing Total	hrs	Target Speed Laser Current	100 %	Scan Rate FOV	4 2 Hz	Pre Mission Post Mission		
	Linar	Flicht	GPS	GPS Time	Line A	Line Aborted				
Flight Line	File Name	Direction	Start	End	Time	nmi to End	Mission ID		Comments	
135 CYRP CALIB	791232716	038	18:48	18:50			18480	2 140	KE @ 1750	Whee
SRP CAUB	21	228	19.07	19:02			19013	7 13	Krs @1750	MAGL
									L.	Pa z of

Appendix E

Point Cloud Strips by Flight Lines

Lidar for City of Ottawa

Conservation area (UTM18)

Flight line naming/numbering

System Y	Vear Mission	Raw LAS File Name	Type	Receiver 1 LAS File Name	FlightLine Number	Receiver 3 LAS Rie Name	Flight Line Number	Shift Applied
61	12 32.60	791232619	Calibration Pass	791212619	12619	791232619	32619	4900
2	12 326h	791232620	Calibration Pass	791212620	12620	791232620	32620	+6cm
2	12 3260	791232632	Cross-tie Une	791212632	12632	791232652	32632	+6cm
2	12 3260	791232633	Production over project	791212633	12633	791232633	32633	409+
62	12 32.65	791232634	Production over project	791212634	12634	791232634	32634	+9cm
61	12 32.6b	791232635	Production over project	791212635	12635	791232635	32635	+6cm
2	12 3260	791232636	Production over project	791212636	12636	791232636	32636	+6cm
2	12 32 50	791232637	Production over project	791212637	12637	7912 32637	32637	+6cm
2	12 32.60	791232638	Production over project	791212638	12638	791232638	32638	+6cm
5	12 32.65	791232639	Calibration Pass	791212639	12639	791232639	32639	Hog+
79	12 326b	791232640	Calibration Pass	791212640	12640	791232640	32640	+t6 cm
2	12 327a	10/1232101	Calibration Pass	10/212164	10/21	10/28216/	32701	None
2	12 327a	791232702	Calibration Pass	791212702	12702	7912 32702	32702	None
2	12 327a	791232703	Production over project	791212703	12703	791232703	32703	None
2	12 327a	191232704	Production over project	791212704	12704	791232704	32704	None
2	12 327a	791232705	Production over project	791212705	12705	791232705	32705	Nove
2	12 327a	791232706	Production over project	791212706	12706	791232706	32706	None
62	12 327a	791282707	Production over project	791212707	12707	791232707	32707	None
2	12 327a	791232708	Production over project	791212708	12708	791232708	32708	None
2	12 327a	791232709	Production over project	791212709	12709	791232709	32709	None
2	12 327a	791232710	Production over project	791212710	12710	791232710	32710	None
2	12 327a	791282711	Production over project	191212711	11/21	791232711	\$2711	None
2	12 327a	791232712	Production over project	791212712	12712	791232712	32712	None
2	12 327a	791232713	Production over project	21/21216/	12713	791232713	81/28	None
2	12 327a	791232714	Production over project	791212714	12714	791232714	32714	None
62	12 327a	791282715	Production over project	791212715	12715	791232715	82715	None
2	12 327a	791232716	Production over project	791212716	12716	791232716	32716	None
52	12 327a	717252167	Calibration Pass	21/21/216/	11/21	791232717	32717	None
2	12 877a	201732718	Calibration Date	C LAND C LOL	0.12.01	O FACE C FOR	01110	Manual

Lidar for City of Ottawa

Ottawa area (MTM 9)

Flight line naming/numbering

Shift Applied	+ 6cm	+6cm	+6cm	+6cm	+6cm	+6cm	+6cm	+6cm	+6cm	+6cm	+6cm	+6cm	+6cm	+6cm	+6cm	+6cm	+6cm	+6cm	+6cm	+6cm	+6cm	+6cm	+6cm	+6cm	+6cm	+6cm	+6cm	+6cm	+6cm	+6cm	+6cm	+6cm	+6cm	+6cm	+6cm
Flight Line Number	32001	32002	32003	32004	32005	32006	32007	320.08	32009	32010	32011	32012	32013	32014	32015	32016	32017	32018	32019	320.20	32021	32022	32023	320.24	32025	320.26	32027	320.28	32029	32030	32031	32032	32033	32034	32035
Receiver 3 LAS File Name	791232001	791 23 200 2	791 23 2003	791 23 2004	791 23 2005	791 23 2006	791232007	791 23 2008	791 23 2009	791 23 2010	791 23 2011	791 23 201 2	791 23 201 3	791 23 2014	791 23 2015	791 23 2016	791232017	791 23 2018	791 23 2019	791 23 2020	791 23 202 1	791 23 202 2	791 23 202 3	791 23 2024	791 23 2025	791 23 2026	791 23 2027	791 23 2028	791 23 2029	791 23 2030	791 23 2031	791 23 203 2	791 23 2033	791232034	791 23 2035
Flight Une Number	12 001	12 002	12 003	12 004	12 005	12 006	12 007	12 008	12 009	12010	12011	12012	12013	12014	12015	12016	12017	12018	12019	12 020	12021	12022	12 023	12024	12025	12 026	12027	12 0 28	12029	12 030	12031	12032	12033	12034	12.035
Receiver 1 LAS File Name	791212001	791212002	791212003	791212004	791212005	791212006	791212007	791212008	791212009	791212010	791212011	791212012	791212013	791212014	210212162	791212016	791212017	791212018	791212019	791212020	791212021	791212022	791212023	791212024	791212025	791212026	791212027	791212028	791212029	791212030	791212031	791212032	791212033	791212034	791212035
Type	Call bration Pass	Calibration Pass	Production over project	Calibration Pass	Calibration Pass	Calibration Pass	Calibration Pass	Production over project	Production over project	Production over project																									
Raw LAS File Name Type	791232001	791232002	791232003	791232004	791232005	791232006	791232007	791232008	791232009	791232010	791232011	791232012	791232013	791232014	791232015	791232016	791232017	791232018	791232019	791232020	791232021	791232022	791232023	791232024	791232025	791232026	791232027	791232028	791232029	791232030	791232031	791232032	791232033	791232034	791232035
Mission	320a	320a	320a	320a	320a	320a	320a	320a	320a	320a	320a	320a	320a	320a	320a	320a	320a	320a	320a	320a	320a	320a	320a	320a	320a	320a	320a	320a	320a	320a	320b	320b	320b	320b	3205
Year	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	Ħ	12	12	1	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	6
System	64	79	79	79	79	29	79	79	79	79	79	79	79	79	64	79	79	79	79	79	79	79	79	79	79	79	79	79	79	79	64	79	79	79	20

+6cm	+6cm	+6cm	+6cm	+6cm	+6cm	+6cm	+6cm	+6cm	+6cm	+6cm	+6cm	+6cm	+6cm	+6cm	+6cm	+6cm	+6cm	+6cm	+6cm	+6cm	+6cm	+6cm	None	None	None	None	None	None	None	None	Nome	None	None	None	None	None	None								
32036	32037	32038	32039	32040	32041	320.42	32043	32044	32045	32046	32047	320.48	32049	32050	32051	32052	32053	32054	32055	32056	32057	32058	32501	32502	32503	32504	32505	32506	32507	32508	325.09	32510	32511	32512	32513	32514	32515	32516	32517	32518	32519	325.20	32521	32522	32523
791232036	791232037	791 23 2038	791 23 2039	791232040	791 23 2041	791 23 204 2	791232043	791 23 204.4	791232045	791 23 2046	791232047	791 23 2048	791 23 204 9	791 23 2050	791232051	791 23 205 2	791232053	791232054	791 23 2055	791232056	791 23 2057	791 23 2058	791232501	791232502	791 23 250 3	791232504	791232505	791232506	791232507	791 23 2508	791 23 250 9	791232510	791 23 251 1	791232512	791232513	791 23 251 4	791232515	791232516	791232517	791232518	791232519	791232520	791232521	791232522	791 23 2523
12036	12037	12 038	12 039	12040	12041	12042	12043	12044	12045	12046	12047	12.048	12049	12050	12051	12052	12053	12054	12055	12056	12057	12.058	12501	12502	12503	12504	12505	12506	12507	12508	12509	12510	12511	12512	12513	12514	12515	12516	12517	12518	12519	12520	12521	12522	12523
791212036	791212037	791212038	791212039	791212040	791212041	791212042	791212043	791212044	791212045	791212046	791212047	791212048	791212049	791212050	791212051	791212052	791212053	791212054	791212055	791212056	791212057	791212058	791212501	791212502	791212503	791212504	791212505	791212506	791212507	791212508	791212509	791212510	791212511	791212512	791212513	791212514	791212515	791212516	791212517	791212518	791212519	791212520	791212521	791212522	791212523
Production over project	Production over project	Production over project	Cross-tie Line	Production over project	Calibration Pass	Calibration Pass	Callibration Pass	Calibration Pass	Production over project	Cross-tie Line	Production over project	Production over project	Calibration Pass	Calibration Pass																															
791232036	791232037	791232038	791232039	791232040	791232041	791232042	791232043	791232044	791232045	791232046	791232047	791232048	791232049	791232050	791232051	791232052	791232053	791232054	791232055	791232056	791232057	791232058	791232501	791232502	791232503	791232504	791232505	791232506	791232507	791232508	791232509	791232510	791232511	791232512	791232513	791232514	791232515	791232516	791232517	791232518	791232519	791232520	791232521	791232522	791232523
320b	320b	320b	320b	320b	320b	320b	320b	320b	320b	320b	320b	320b	320b	320b	320b	320b	320b	320b	320b	320b	320b	320b	325a	325a	325a	325a	325a	325a	325a	325a	325a	325a	325a	325a	325a	325a	325a	325a	325a	325a	325a	325a	325a	325a	325a
Ħ	1	12	11	12	12	12	12	12	12	12	12	12	12	11	12	11	Ħ	1	1	5	11	12	12	11	Ħ	Ħ	1	11	12	Ħ	12	12	12	12	12	12	12	Ħ	a	1	1	q	1	1	11
79	79	79	64	79	52	64	79	64	79	64	62	29	64	79	79	79	79	52	79	79	56	79	64	64	79	79	79	79	52	79	64	79	79	62	52	64	79	79	79	56	79	52	79	79	79

+6cm	+6cm	+6cm	+6cm	+6cm	+6cm	+6cm	+6cm	+6cm	+6cm	+6cm	+6cm	+6cm	+6cm	+6cm	+6cm	+6cm	+6cm	+6cm	+6cm	+6cm	+6cm	+6cm	+6cm	+6cm	+6cm	+6cm	+6cm	+6cm	+6cm	+6cm	+6cm	+6cm	+6cm	+6cm	+6cm	+6cm	+6cm	+6cm	+6cm	+6cm	+6cm	+6cm	+6cm	+6cm	+6cm
325.24	32525	325.26	32527	32528	325.29	325.30	32531	32532	32533	32534	32535	32536	325.37	32538	32539	32540	32541	32542	32543	32544	32545	32595	32546	32596	32547	32597	32548	32598	32549	32550	32551	32601	32602	32603	32653	32604	32654	32605	32655	32606	32656	32607	32657	32608	32658
791 23 252 4	791232525	791 23 2526	791232527	791 23 2528	791 23 2529	791 23 2530	791 23 2531	791232532	791 23 2533	791 23 2534	791 23 2535	791232536	791 23 2537	791232538	791 23 2539	791232540	791232541	791232542	232543	791232544	791232545	791232595	791232546	791 23 2596	791232547	791232597	791232548	791 23 2598	791232549	791232550	791232551	791 23 260 1	791232602	791232603	791 23 265 3	791232604	791 23 265 4	791232605	791 23 265 5	791 23 260 6	791 23 265 6	791232607	791 23 265 7	791232608	791232658
12524	12525	12526	12527	12528	12529	12530	12531	12532	12533	12534	12535	12536	12537	12538	12539	12540	12541	12542	12543	12544	12545	12595	12546	12596	12547	12597	12548	12598	12549	12550	12551	12601	12602	12 603	12 653	12604	12 654	12 605	12655	12606	12 656	12.607	12 657	12 608	12 658
791212524	791212525	791212526	791212527	791212528	791212529	791212530	791212531	791212532	791212533	791212534	791212535	791212536	791212537	791212538	791212539	791212540	791212541	791212542	791212543	791212544	791212545	791212595	791212546	791212596	791212547	791212597	791212548	791212598	791212549	791212550	791212551	791212601	791212602	791212603	791212653	791212604	791212654	791212605	791212655	791212606	791212656	791212607	791212657	791212608	791212658
Calibration Pass	Calibration Pass	Production over project	Split (First 70 million pts)	Split (Rest)	Split (First 70 million pts)	Spliit (Rest)	Spirt (First 70 million pts)	Split (Rest)	Split (First 70 million pts)	Split (Rest)	Cross-tie Line	Calibration Pass	Calibration Pass	Calibration Pass	Calibration Pass	Spit (Fist 70 million pts)	Split (Rest)	Spit (First 70 million pts)	Split (Rest)	Split (First 70 million pts)	Spliit (Rest)	Spirt (First 70 million pts)	Split (Rest)	Split (First 70 million pts)	Split (Rest)	Split (First 70 million pts)	Split (Rest)																		
		791232526	791232527	791232528		791232530	791232531	791232532	791232533	791232534	791232535				791232539	791232540	791232541	791232542			791232545		791232546		791232547		791232548		791232549		791232551	791232601		791232603		791232604		791232605		791232606		791232607		791232608	
325b	325b	325b	325b	325b	325b	325b	325b	325b	325b	325b	325b	325b	325b	325b	325b	325b	325b	325b	325b	325b	325b		325b		325b		325b		325b	325b	325b	326a	326a	326a		326a		326a		326a		326a		326a	
12	12	12	12	12	12	11	12	a	12	a	12	11	12	Ħ	12	12	12	12	12	12	12		12		12		11		11	12	12	12	12	12		12		11		12		11		12	
79	79	79	79	79	79	79	79	79	79	79	79	79	79	79	79	79	79	79	79	79	79		79		79		79		79	79	79	52	79	79		79		79		79		79		79	

+6cm	+6cm	+6cm	+6cm	+6cm	+6cm	+6cm	+6cm	+6cm	+6cm	+6cm	+6cm	+6cm	+6cm	+6cm	+6cm	+6cm	+6cm	+6cm	+6cm	+6cm	+6cm	+6cm	+6cm	+6cm	+6cm	+6cm	+6cm	+6cm	+6cm	+6cm														
32609	32659	32610	32660	32611	32661	32612	32662	32613	32663	32614	32664	32615	32665	32616	32666	32617	32618	32619	32620	32621	32671	32622	32672	32623	32673	32624	32674	32625	32675	32626	32676	32627	32677	32628	32678	32629	32679	32630	32680	32631	32681	32632	32633	32634
791 23 2609	791 23 265 9	791232610	791 23 2660	791232611	791 23 2661	791232612	791232662	791 23 261 3	791232663	791 23 261 4	791232664	791232615	791 23 2665	791 23 261 6	791 23 2666	791 23 261 7	791 23 2618	791232619	791232620	791232621	791232671	791 23 262 2	791232672	791232623	791 23 267 3	791 23 262 4	791232674	791 23 262 5	791 23 267 5	791 23 262 6	791 23 267 6	791 23 262 7	791232677	791232628	791 23 267 8	791 23 262 9	791232679	791 23 2630	791 23 2680	791232631	791 23 2681	791 23 263 2	791232633	791 23 2634
12 609	12 659	12610	12660	12611	12661	12612	12662	12613	12 663	12614	12664	12615	12 665	12616	12666	12617	12618	12619	12620	12621	12671	12622	12672	12.623	12673	12.624	12.674	12.625	12675	12 626	12.676	12.627	12677	12.628	12.678	12.629	12.679	12630	12680	12631	12681	12632	12 633	12634
791212609	791212659	791212610	791212660	791212611	791212661	791212612	791212662	791212613	791212663	791212614	791212664	791212615	791212665	791212616	791212666	791212617	791212618	791212619	791212620	791212621	791212671	791212622	791212672	791212623	791212673	791212624	791212674	791212625	791212675	791212626	791212676	791212627	791212677	791212628	791212678	791212629	791212679	791212630	791212680	791212631	791212681	791212632	791212633	791212634
Split (First 70 million pts)	Split (Rest)	Split (First 70 million pts)	Split (Rest)	Split (First 70 million pts)	Split (Rest)	Split (First 70 million pts)	Split (Rest)	Split (First 70 million pts)	Split (Rest)	Split (First 70 million pts)	Split (Rest)	Split (First 70 million pts)	Split (Rest)	Split (First 70 million pts)	Split (Rest)	Callibration Pass	Calibration Pass	Calibration Pass	Calibration Pass	Split (First 70 million pts)	Split (Rest)	Split (First 70 million pts)	Split (Rest)	Split (First 70 million pts)	Split (Rest)	Split (First 70 million pts)	Split (Rest)	Split (First 70 million pts)	Split (Rest)	Split (First 70 million pts)	Spilit (Rest)	Spirt (First 70 million pts)	Spilit (Rest)	Split (First 70 million pts)	Split (Rest)	Split (First 70 million pts)	Split (Rest)	Split (First 70 million pts)	Split (Rest)	Split (First 70 million pts)	Split (Rest)	Cross-tie Line	Call bration Pass	Calibration Pass
791232609		791232610		791232611		791232612		791232613		791232614		791232615		791232616		791232617	791232618	791232619	791232620	791232621		791232622		791232623		791232624		791232625		791232626		791232627		791232628		791232629		791232630		791232631		791232632		791232634
326a		326a		326a		326a		326a		326a		326a		326a		326a	326a	326b	326b	326b	ſ	326b		326b		326b		326b		326b		326b		326b	326b	326b								
12		12		12		11		1		1		12		12		12	12	12	12	11		11		12		11		1		12		12		12		12		12		12		12	12	12
79		79		79		79		79		79		79		79		79	79	79	79	79		79		79		79		79		79		79		79		79		79		79		79	79	79

Appendix B

HEC-HMS Parameters

HEC-HMS Parameters

1) Time of Concentration Calculations

Table B1: Basin Parameters

	Table B1: Casey Creek Basin Parameters											
Catchment ID	Area (ha)	Channel/Overla 10%	nd Flow Lengths 85%	Length (m)	Percent Slope	Runoff Coefficient						
		10%	63%		0.000							
A1	31.36	60.28	68.13	2010.17	0.52	0.35						
A1 A2	28.20	60.28	63.25	1123.73	0.35	0.55						
A3	208.30	62.56	81.04	4656.66	0.53	0.52						
A4	667.39	67.20	86.56	7728.18	0.33	0.58						
A5	1111.93	69.26	91.14	8761.77	0.33	0.44						
A6	1068.12	69.74	113.63	9972.90	0.59	0.40						
A7	169.42	60.45	69.24	2167.68	0.54	0.58						
A8	117.81	68.46	89.07	3315.59	0.83	0.48						
A9	763.95	98.40	118.43	6755.65	0.40	0.29						
A10	26.23	64.17	72.68	1419.26	0.80	0.57						
A11	26.14	71.41	89.37	1723.60	1.39	0.45						
A12	147.72	84.47	95.69	1899.82	0.79	0.62						
A13	587.06	99.90	123.65	7712.96	0.41	0.35						
A14	314.25	99.08	113.39	4997.96	0.38	0.39						
A15	74.91	69.08	76.53	1215.92	0.82	0.45						
A16	172.90	80.22	91.83	2231.92	0.69	0.49						

Table B2: Time to Peak

Table B2: Time of Concentration (T_c)										
Catchment ID	Airport Formula (hrs)	Bransby- Williams Formula (hrs)	Time to Peak (0.67 * <i>T_c</i>) (min)							
A1	2.27	-	91							
A2	-	0.94	38							
A3	-	2.95	118							
A4	-	4.77	192							
A5	-	5.14	207							
A6	-	5.25	211							
A7	-	1.39	56							
A8	-	2.03	82							
A9	4.90	-	197							
A10	-	1.02	41							
A11	-	1.11	44							
A12	-	1.15	46							
A13	4.80	-	193							
A14	3.76	-	151							
A15	-	0.78	31							
A16	-	1.36	55							

Airport Formula	For use when the runoff coefficient is less than 0.4
$T_c = 3.26 * (1.1 - C) * L^{0.5} * S_w^{-0.33}$	
Where:	
T_c = time of concentration in minutes	
<i>C</i> = runoff coefficient	
L = watershed length in metres	
S_w = watershed slope in %	
Source: MTO Drainage Manual 1997 – Chapter 8, page 28	

Bransby-Williams Formula	For use when the runoff coefficient is 0.4 or greater
$T_c = 0.057 * L * S_w^{-0.2} * A^{-0.1}$	
Where:	
T_c = time of concentration in minutes	
L = watershed length in metres	
S_w = watershed slope in %	
A = watershed area in hectares	
Source: MTO Drainage Manual 1997 – Chapter 8, page 28	

2) CN Value Calculations

Table B3: CN Values

Table B3: Cl	V Values								
	Hydrologic Soil Group								
Land Use ¹	А	AB ²	В	С	D				
Aggregate ³	50	50	50	50	50				
Crop and Pasture ⁴	53	61	70	80	87				
Wetland⁵	50	50	50	50	50				
Settlement/Transportation ⁶	98	98	98	98	98				
Woodland	25	40	55	70	77				
Water⁵	50	50	50	50	50				
Grassland ⁷	30	44	58	71	78				

Source: Design Chart 1.09 MTO Drainage Management Manual (1997)

Note: 1 – Considered Good Hydrologic Condition except as noted

2 – Average of A and B hydrologic soil groups

- 3 Assumed low runoff potential similar to wetlands
- 4 Average of Row Crops (straight rows) and Pasture/Range (contoured)
- 5 Lakes and Wetlands from 2nd Page of Design Chart 1.09
- 6 Impervious areas (paved) from 2nd page of Design Chart 1.09
- 7 Meadow

Table 4: Detailed CN Value Calculations

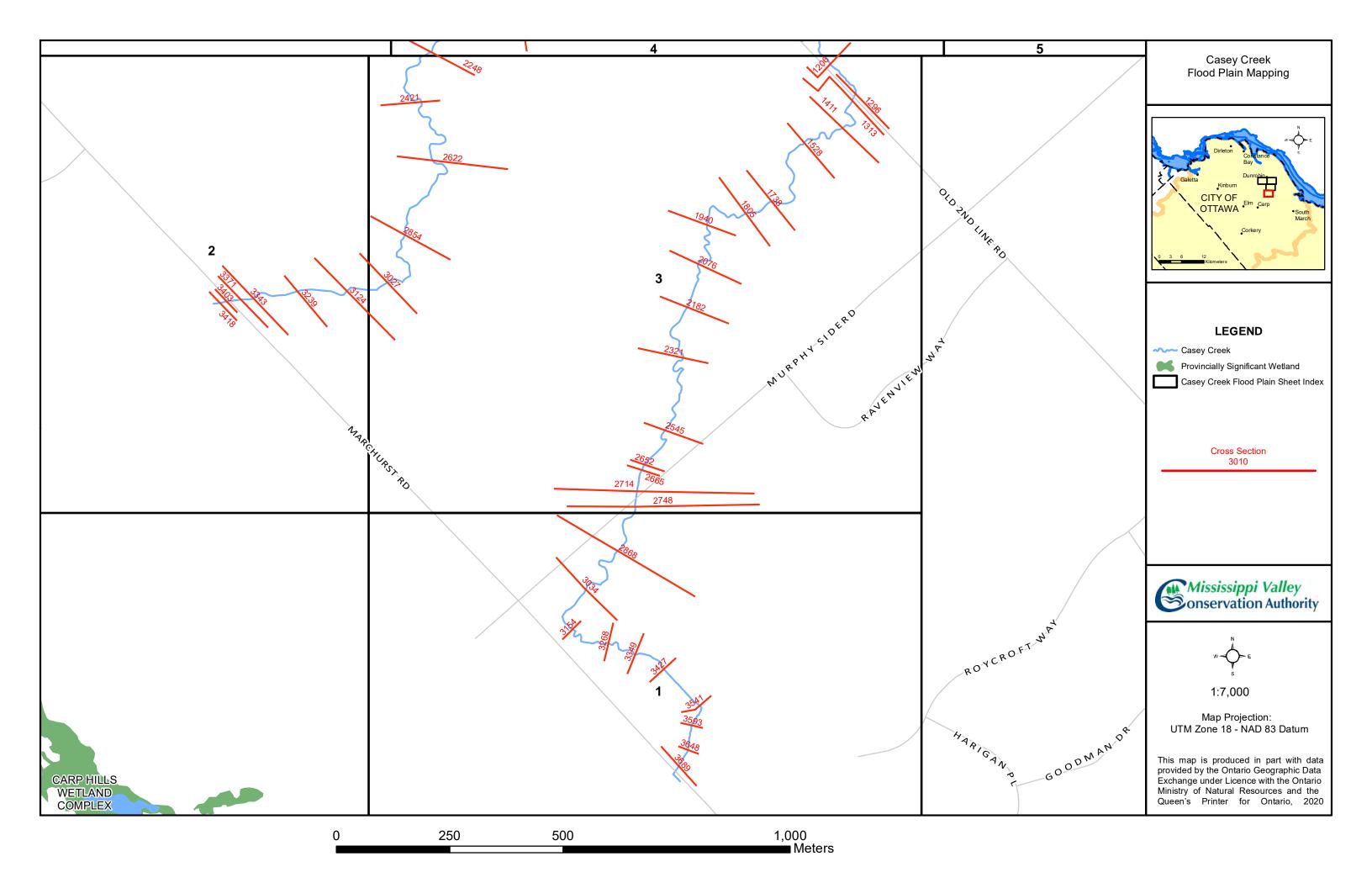
		Ta	ble B4: Weig	hted CN	Values						
Basin	Land Use	Soil	Group A	Soil	Group B	Soil	Group C	Soil	Group D		
A1	Land Ose	%	Area (ha)	%	Area (ha)	%	Area (ha)	%	Area (ha)		
	Aggregate	0.0%	0.00	0.0%	0.00	0.0%	0.00	0.0%	0.00		
	Crop and Pasture	0.0%	0.00	0.0%	0.00	0.0%	0.00	5.8%	1.20		
	Wetland	0.0%	0.00	4.5%	0.94	0.0%	0.00	0.5%	0.11		
	Settlement/Transportation	0.0%	0.00	0.0%	0.00	0.0%	0.00	0.0%	0.00		
	Woodland	0.0%	0.00	77.8%	16.15	0.0%	0.00	10.6%	2.20		
	Water	0.0%	0.00	0.7%	0.14	0.0%	0.00	0.0%	0.01		
	Grassland	0.0%	0.00	0.0%	0.00	0.0%	0.00	0.0%	0.00		
	Total		0.00		17.23		0.00		3.52		
	Weighted CN Value	0.00		45.41		0.00		13.48		Total Weighted CN for Basin A1	58.89
Basin	Land Use	Soi	Group A	Soil	Group B	Soil	Group C	Soil	Group D		
A2	Land Ose	%	Area (ha)	%	Area (ha)	%	Area (ha)	%	Area (ha)		
	Aggregate	0.0%	0.00	0.0%	0.00	0.0%	0.00	0.0%	0.00		
	Crop and Pasture	0.0%	0.00	0.0%	0.00	0.0%	0.00	58.3%	7.91		
	Wetland	0.0%	0.00	0.4%	0.06	0.0%	0.00	12.4%	1.68		
	Settlement/Transportation	0.0%	0.00	0.0%	0.00	0.0%	0.00	13.1%	1.78		
	Woodland	8.8%	1.20	0.0%	0.00	0.0%	0.00	0.0%	0.00		
	Water	0.0%	0.00	0.0%	0.00	0.0%	0.00	6.9%	0.93		
	Grassland	0.0%	0.00	0.0%	0.00	0.0%	0.00	0.0%	0.00		
	Total		1.20		0.06		0.00		12.30		
	Weighted CN Value	2.21		0.22		0.00		73.24		Total Weighted CN for Basin A2	75.67
Basin	Land Use	Soi	Group A	Soil	Group B	Soil	Group C	Soil	Group D		

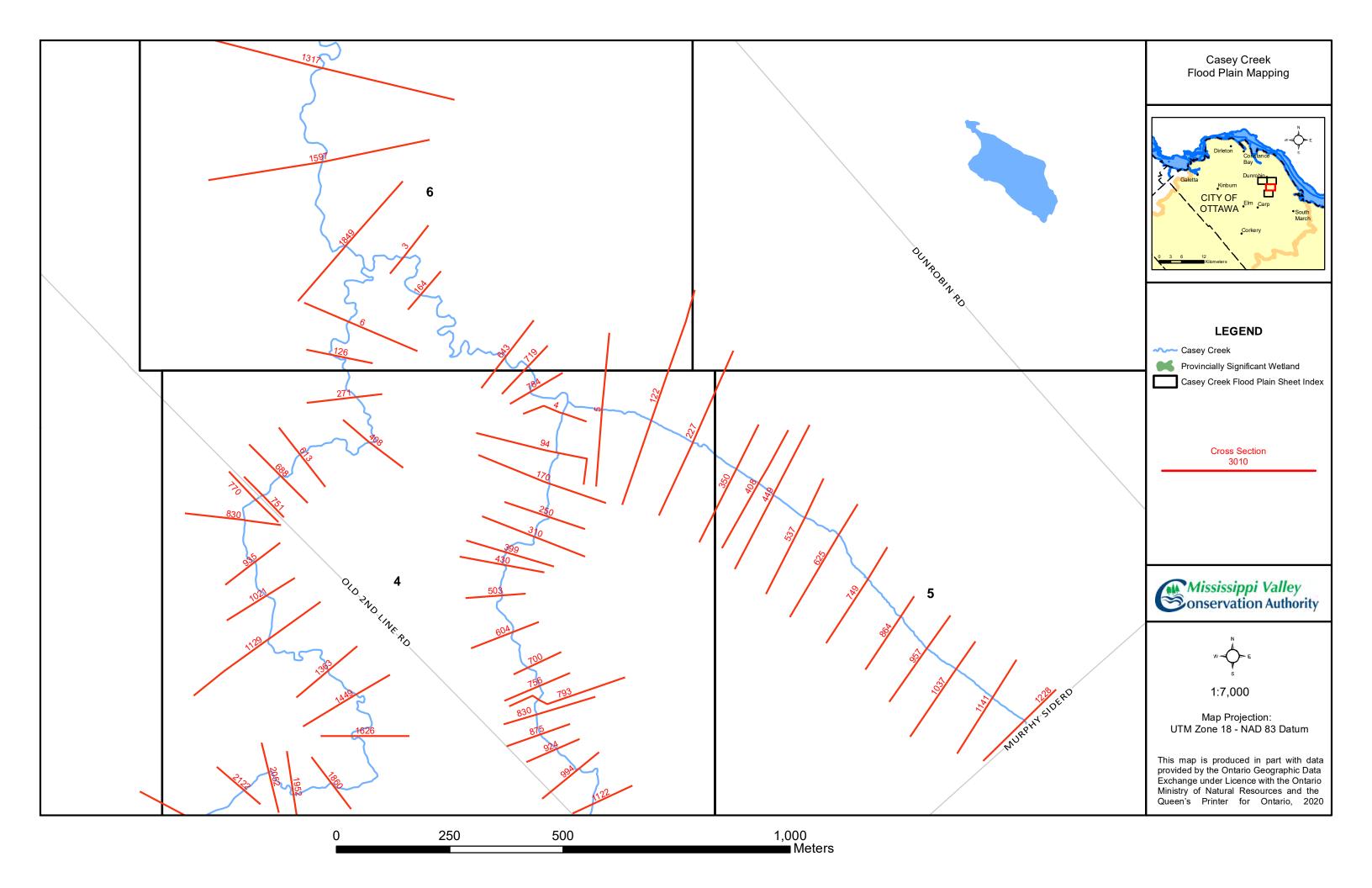
A3		%	Area (ha)	%	Area (ha)	%	Area (ha)	%	Area (ha)		
	Aggregate	0.0%	0.00	0.0%	0.00	0.0%	0.00	0.0%	0.00		
	Crop and Pasture	0.0%	0.00	39.5%	75.77	0.4%	0.72	23.8%	45.64		
	Wetland	0.0%	0.00	1.4%	2.65	0.0%	0.00	1.4%	2.63		
	Settlement/Transportation	0.0%	0.00	5.4%	10.36	0.3%	0.66	3.8%	7.24		
	Woodland	0.0%	0.00	21.8%	41.93	0.9%	1.70	1.2%	2.34		
	Water	0.0%	0.00	0.0%	0.00	0.0%	0.00	0.0%	0.00		
	Grassland	0.0%	0.00	0.1%	0.26	0.0%	0.00	0.0%	0.00		
	Total		0.00		130.97		3.08		57.85		
	Weighted CN Value	0.00		45.72		1.26		26.01		Total Weighted CN for Basin A3	72.99
Basin	Land Use	Soil	Group A	Soil	Group B	Soil	Group C	Soil	Group D		
A4	Land Ose	%	Area (ha)	%	Area (ha)	%	Area (ha)	%	Area (ha)		
	Aggregate	0.0%	0.00	0.0%	0.00	0.0%	0.00	0.0%	0.00		
	Crop and Pasture	0.0%	0.00	13.6%	79.04	0.2%	1.39	64.3%	373.18		
	Wetland	0.0%	0.00	1.2%	7.08	0.4%	2.38	3.0%	17.44		
	Settlement/Transportation	0.0%	0.00	2.1%	11.96	0.0%	0.00	4.1%	23.95		
	Woodland	0.0%	0.00	9.3%	54.22	0.0%	0.08	1.7%	9.97		
	Water	0.0%	0.00	0.0%	0.00	0.0%	0.00	0.0%	0.00		
	Grassland	0.0%	0.00	0.0%	0.00	0.0%	0.00	0.0%	0.00		
	Total		0.00		152.30		3.85		424.54		
	Weighted CN Value	0.00		17.29		0.41		62.78		Total Weighted CN for Basin A4	80.47
Basin	Land Use	Soil	Group A	Soil	Group B	Soil	Group C	Soil	Group D		
A5	Lanu Use	%	Area (ha)	%	Area (ha)	%	Area (ha)	%	Area (ha)		
	Aggregate	0.0%	0.00	0.0%	0.00	0.0%	0.00	0.0%	0.00		

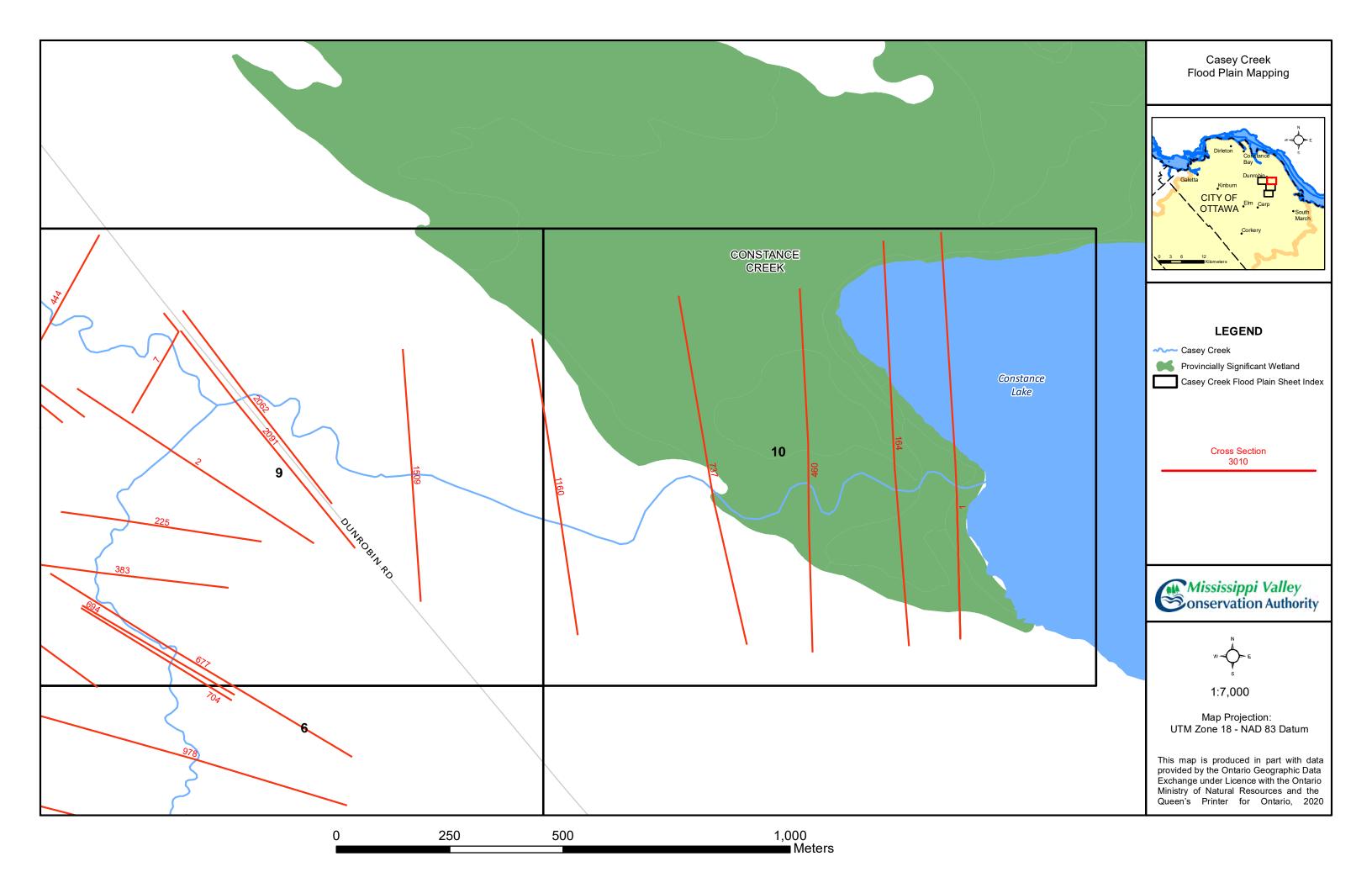
	Crear and Desture	0.0%	0.00	31.3%	210.02	1.6%	15 42	10 50/	102 55]	
	Crop and Pasture Wetland	0.0%	0.00	5.7%	310.92 56.65	0.0%	15.42	19.5% 0.1%	193.55 1.06		
			0.00				0.00				
	Settlement/Transportation	0.0%	0.00	0.3%	2.94	0.0%	0.00	0.3%	2.77		
	Woodland	0.0%	0.00	40.1%	398.66	0.0%	0.00	0.7%	7.12		
	Water	0.0%	0.00	0.0%	0.00	0.0%	0.00	0.0%	0.00		
	Grassland	0.0%	0.00	0.5%	4.53	0.0%	0.00	0.0%	0.00		
	Total		0.00		773.70		15.42		204.50		
	Weighted CN Value	0.00		47.38		1.24		17.83		Total Weighted CN for Basin A5	66.44
Basin		Soil	Group A	Soil	Group B	Soil	Group C	Soil	Group D		00.44
A6	Land Use	%	Area (ha)	%	Area (ha)	%	Area (ha)	%	Area (ha)		
AU		/0	Aled (IId)	/0	Alea (lia)	/0	Alea (lla)	/0	Alea (lia)		
	A = === == + =	0.00/	0.00	0.00/	0.00	0.00/	0.00	0.00/	0.00		
	Aggregate	0.0%	0.00	0.0%	0.00	0.0%	0.00	0.0%	0.00		
	Crop and Pasture	0.0%	0.00	11.7%	110.53	0.0%	0.00	15.1%	142.82		
	Wetland	0.0%	0.00	14.7%	138.69	0.0%	0.00	0.1%	1.20		
	Settlement/Transportation	0.0%	0.00	1.0%	9.60	0.0%	0.00	3.7%	34.89		
	Woodland	0.0%	0.00	47.9%	451.66	0.0%	0.00	2.5%	23.78		
	Water	0.0%	0.00	0.0%	0.00	0.0%	0.00	0.0%	0.00		
	Grassland	0.0%	0.00	3.0%	28.59	0.0%	0.00	0.2%	1.63		
	Total		0.00		739.07		0.00		204.32		
	Weighted CN Value	0.00		44.64		0.00		18.93		Total Weighted CN for Basin A6	63.57
Basin	Land Use	Soil	Group A	Soil	Group B	Soil	Group C	Soil	Group D		
A7	Lanu Use	%	Area (ha)	%	Area (ha)	%	Area (ha)	%	Area (ha)		
	Aggregate	0.0%	0.00	0.0%	0.00	0.0%	0.00	0.0%	0.00		
	Crop and Pasture	0.0%	0.00	23.2%	32.02	0.0%	0.00	60.3%	83.38		
	Wetland	0.0%	0.00	0.3%	0.37	0.0%	0.00	4.0%	5.47		
	Settlement/Transportation	0.0%	0.00	0.2%	0.27	0.0%	0.00	1.1%	1.53		

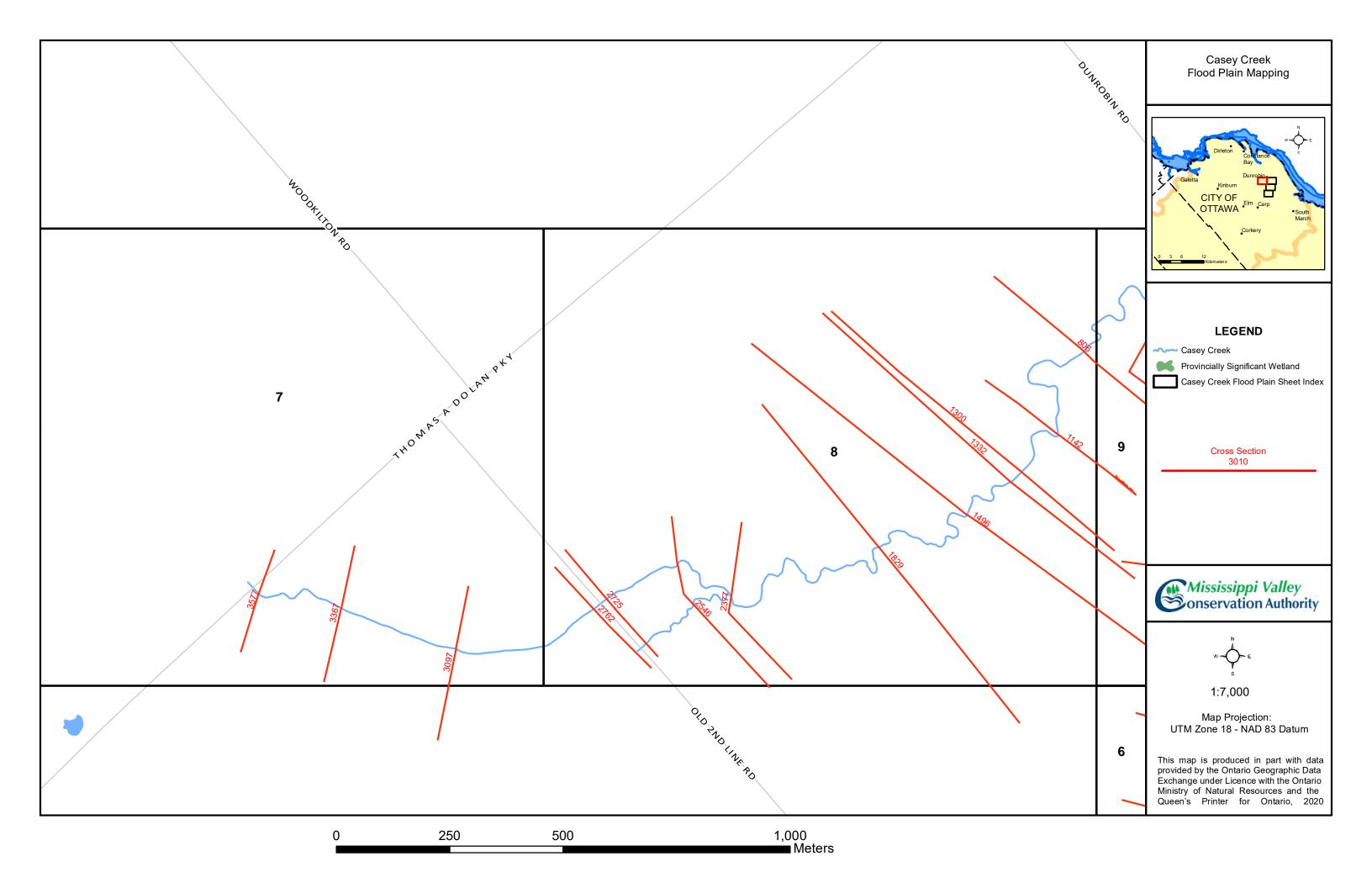
	Woodland	0.0%	0.00	3.4%	4.65	0.0%	0.00	7.4%	10.17]	
	Water	0.0%	0.00	0.0%	0.00	0.0%	0.00	0.3%	0.44		
	Grassland	0.0%	0.00	0.0%	0.00	0.0%	0.00	0.0%	0.00		
	Total		0.00		37.31		0.00		100.99		
	Weighted CN Value	0.00		18.38		0.00		61.33		Total Weighted CN for Basin A7	79.72
Basin	Land Use	Soil	Group A	Soil	Group B	Soil	Group C	Soil	Group D		
A8	Land Ose	%	Area (ha)	%	Area (ha)	%	Area (ha)	%	Area (ha)		
	Aggregate	0.0%	0.00	0.0%	0.00	0.0%	0.00	0.0%	0.00		
	Crop and Pasture	0.0%	0.00	54.0%	52.05	0.0%	0.00	13.8%	13.33		
	Wetland	0.0%	0.00	1.1%	1.04	0.0%	0.00	0.0%	0.00		
	Settlement/Transportation	0.0%	0.00	4.2%	4.05	0.0%	0.00	0.0%	0.00		
	Woodland	0.0%	0.00	25.4%	24.46	0.0%	0.00	1.5%	1.47		
	Water	0.0%	0.00	0.0%	0.00	0.0%	0.00	0.0%	0.00		
	Grassland	0.0%	0.00	0.0%	0.00	0.0%	0.00	0.0%	0.00		
	Total		0.00		81.60		0.00		14.80		
	Weighted CN Value	0.00		56.41		0.00		13.20		Total Weighted CN for Basin A8	69.61
Basin	Land Use	Soil	Group A	Soil	Group B	Soil	Group C	Soil	Group D		
A9	Land Ose	%	Area (ha)	%	Area (ha)	%	Area (ha)	%	Area (ha)		
	Aggregate	0.0%	0.00	0.0%	0.00	0.0%	0.00	0.0%	0.00		
	Crop and Pasture	0.0%	0.00	0.2%	1.07	0.0%	0.00	0.5%	3.02		
	Wetland	0.0%	0.00	18.5%	114.25	0.0%	0.00	0.0%	0.00		
	Settlement/Transportation	0.0%	0.00	1.5%	9.39	0.0%	0.00	0.0%	0.00		
	Woodland	0.0%	0.00	60.7%	374.15	0.0%	0.00	13.2%	81.11		
	Water	0.0%	0.00	3.8%	23.21	0.0%	0.00	0.0%	0.00		
	Grassland	0.0%	0.00	1.6%	9.81	0.0%	0.00	0.0%	0.00		

	Total		0.00		531.88		0.00		84.13]	
	Weighted CN Value	0.00		47.10		0.00		10.57		Total Weighted CN for Basin A9	57.67
Basin	Land Use	Soil	Group A	Soil	Group B	Soil	Group C	Soil	Group D		
A10	Land Use	%	Area (ha)	%	Area (ha)	%	Area (ha)	%	Area (ha)		
	Aggregate	0.0%	0.00	0.0%	0.00	0.0%	0.00	0.0%	0.00		
	Crop and Pasture	0.0%	0.00	15.2%	2.80	0.0%	0.00	54.7%	10.04		
	Wetland	0.0%	0.00	0.0%	0.00	0.0%	0.00	0.0%	0.00		
	Settlement/Transportation	0.0%	0.00	6.8%	1.24	0.0%	0.00	0.0%	0.00		
	Woodland	0.0%	0.00	19.7%	3.61	0.0%	0.00	3.7%	0.68		
	Water	0.0%	0.00	0.0%	0.00	0.0%	0.00	0.0%	0.00		
	Grassland	0.0%	0.00	0.0%	0.00	0.0%	0.00	0.0%	0.00		
	Total		0.00		7.65		0.00		10.72		
	Weighted CN Value	0.00		28.09		0.00		50.40		Total Weighted CN for Basin A10	78.49
Basin		Soil	Group A	Soil	Group B	Soil	Group C	Soil	Group D		
A11	Land Use	%	Area (ha)	%	Area (ha)	%	Area (ha)	%	Area (ha)		
	Aggregate	0.0%	0.00	0.0%	0.00	0.0%	0.00	0.0%	0.00		
	Crop and Pasture	0.0%	0.00	50.0%	12.01	0.0%	0.00	14.2%	3.42		
	Wetland	0.0%	0.00	0.7%	0.16	0.0%	0.00	0.0%	0.00		
	Settlement/Transportation	0.0%	0.00	0.0%	0.00	0.0%	0.00	0.0%	0.00		
	Woodland	0.0%	0.00	35.1%	8.42	0.0%	0.00	0.0%	0.01		
	Water	0.0%	0.00	0.0%	0.00	0.0%	0.00	0.0%	0.00		
	Grassland	0.0%	0.00	0.0%	0.00	0.0%	0.00	0.0%	0.00		
	Total		0.00		20.59		0.00		3.43		
	Weighted CN Value	0.00		54.61		0.00		12.42		Total Weighted CN for Basin A11	67.03

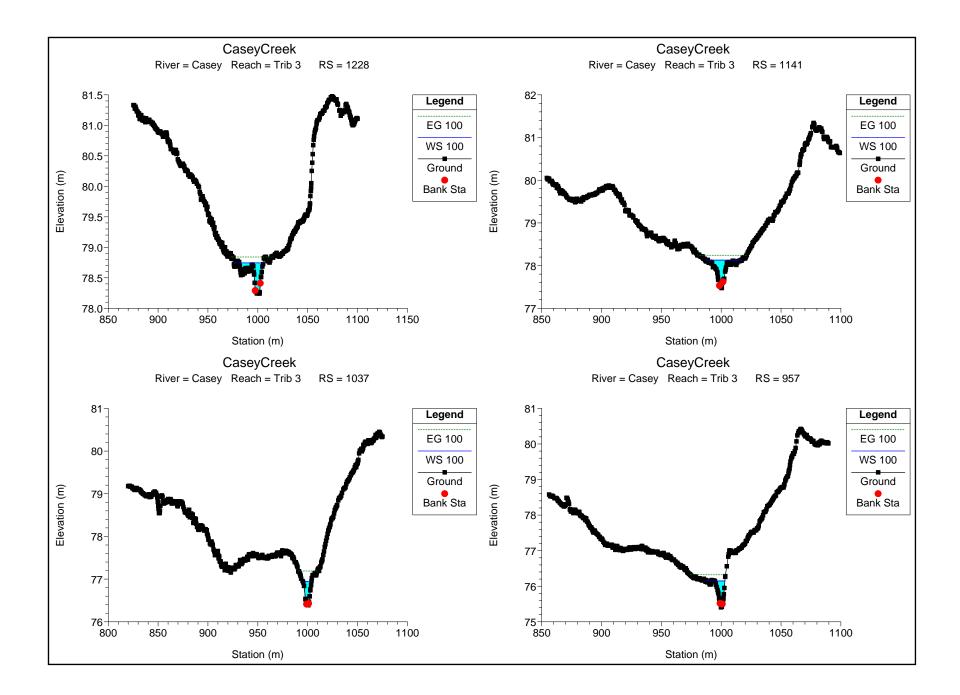

Basin	Landling	Soil	Group A	Soil	Group B	Soil	Group C	Soil	Group D		
A12	Land Use	%	Area (ha)	%	Area (ha)	%	Area (ha)	%	Area (ha)		
	Aggregate	0.0%	0.00	0.0%	0.00	0.0%	0.00	0.0%	0.00		
	Crop and Pasture	0.0%	0.00	28.6%	35.88	0.0%	0.00	44.6%	55.96		
	Wetland	0.0%	0.00	0.0%	0.00	0.0%	0.00	0.0%	0.00		
	Settlement/Transportation	0.0%	0.00	7.1%	8.87	0.0%	0.00	6.8%	8.51		
	Woodland	0.0%	0.00	11.0%	13.80	0.0%	0.00	2.0%	2.48		
	Water	0.0%	0.00	0.0%	0.00	0.0%	0.00	0.0%	0.00		
	Grassland	0.0%	0.00	0.0%	0.00	0.0%	0.00	0.0%	0.00		
	Total		0.00		58.55		0.00		66.95		
										Total Weighted	
	Weighted CN Value	0.00		32.99		0.00		46.96		CN for Basin	
										A12	79.95
Basin	Land Use		Group A	Soil	Group B		Group C		Group D		
A13		%	Area (ha)	%	Area (ha)	%	Area (ha)	%	Area (ha)		
	Aggregate	0.0%	0.00	0.0%	0.00	0.0%	0.00	0.0%	0.00		
	Crop and Pasture	0.0%	0.00	10.6%	51.00	0.0%	0.00	12.0%	57.49		
	Wetland	0.0%	0.00	15.7%	75.46	0.0%	0.00	0.0%	0.00		
	Settlement/Transportation	0.0%	0.00	0.5%	2.21	0.0%	0.00	0.6%	2.89		
	Woodland	0.0%	0.01	58.3%	279.93	0.0%	0.00	0.0%	0.21		
	Water	0.0%	0.00	2.1%	10.07	0.0%	0.00	0.0%	0.00		
	Grassland	0.0%	0.00	0.3%	1.23	0.0%	0.00	0.0%	0.00		
	Total		0.01		419.90		0.00		60.59		
	Weighted CN Value	0.00		48.97		0.00		11.03		Total Weighted CN for Basin A13	60.00
Basin	Land Use	Soil	Group A	Soil	Group B	Soil	Group C	Soil	Group D		
A14	Land Use	%	Area (ha)	%	Area (ha)	%	Area (ha)	%	Area (ha)		

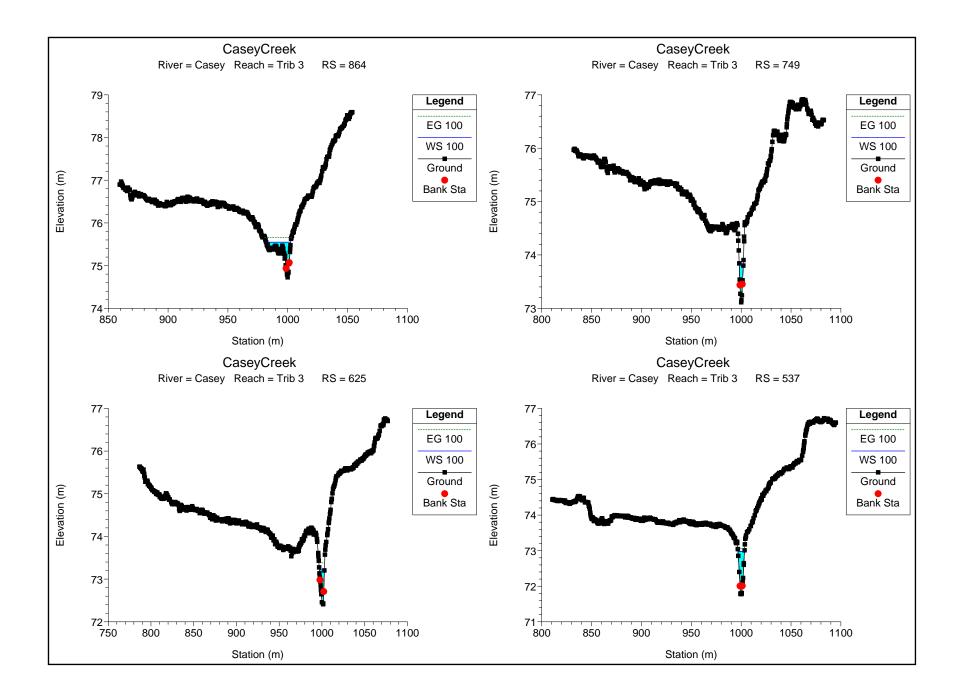

Aggregate 0.0% 0.00 0.0% 0.00 0.0% 0.00 0.0% 0.00 0.0% 0.00 0.0% 0.00 0.0% 0.00 0.0% 0.00 0.0% 0.00 0.0% 0.00 14.4% 38.96 0.0% 0.00 18.6% 50.52 Wetland 0.0% 0.00 12.8% 34.82 0.0% 0.00 0.0% 0.00 Settlement/Transportation 0.0% 0.00 0.7% 1.85 0.0% 0.00 0.3% 0.70 Woodland 0.0% 0.00 52.7% 142.91 0.0% 0.00 0.4% 1.07	
Wetland 0.0% 0.00 12.8% 34.82 0.0% 0.00 0.0% 0.00 Settlement/Transportation 0.0% 0.00 0.7% 1.85 0.0% 0.00 0.3% 0.70 Woodland 0.0% 0.00 52.7% 142.91 0.0% 0.00 0.4% 1.07	
Settlement/Transportation 0.0% 0.00 0.7% 1.85 0.0% 0.00 0.3% 0.70 Woodland 0.0% 0.00 52.7% 142.91 0.0% 0.00 0.4% 1.07	
Woodland 0.0% 0.00 52.7% 142.91 0.0% 0.00 0.4% 1.07	
Water 0.0% 0.00 0.0% 0.00 0.0% 0.00 0.0% 0.00	
Grassland 0.0% 0.00 0.2% 0.59 0.0% 0.00 0.0% 0.00	
Total 0.00 219.13 0.00 52.29	
Weighted CN Value 0.00 46.22 0.00 16.75 Total Weighted CN Value A14	d 62.97
Basin Soil Group A Soil Group B Soil Group C Soil Group D	
A15 % Area (ha)	
Aggregate 0.0% 0.00 0.0% 0.00 0.0% 0.00 0.0% 0.00	
Crop and Pasture 0.0% 0.00 37.8% 27.35 27.8% 20.07 4.0% 2.90	
Wetland 0.0% 0.00 0.0% 0.00 0.0% 0.00 0.0% 0.00	
Settlement/Transportation 0.0% 0.00 0.4% 0.32 0.3% 0.22 0.0% 0.00	
Woodland 0.0% 0.00 26.9% 19.48 2.3% 1.69 0.4% 0.26	
Water 0.0% 0.00 0.0% 0.00 0.0% 0.00 0.0% 0.00	
Grassland 0.0% 0.00 0.0% 0.00 0.0% 0.00 0.0% 0.00	
Total 0.00 47.15 21.98 3.16	
Weighted CN Value 0.00 41.74 24.15 3.77 Total Weighted CN Value 0.00	d 69.65
Basin Soil Group A Soil Group B Soil Group C Soil Group D	
A16 % Area (ha)	
Aggregate 0.0% 0.00 0.0% 0.00 0.0% 0.00 0.0% 0.00	
Crop and Pasture 0.0% 0.00 20.5% 33.51 5.2% 8.55 0.3% 0.53	
Wetland 0.0% 0.00 5.4% 8.91 1.4% 2.22 0.0% 0.00	

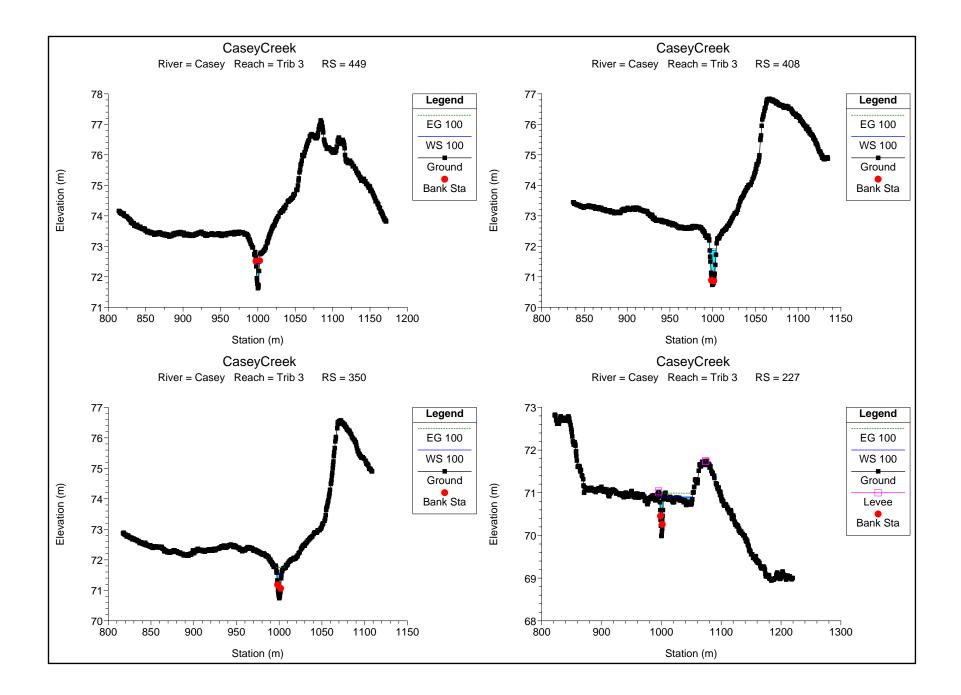

Settlement/Transportation	0.0%	0.00	21.2%	34.69	1.3%	2.19	0.0%	0.00]	
Woodland	0.0%	0.00	39.4%	64.48	3.5%	5.68	0.3%	0.44		
Water	0.0%	0.00	0.0%	0.00	0.0%	0.00	0.0%	0.00		
Grassland	0.0%	0.00	1.4%	2.33	0.0%	0.00	0.0%	0.00		
Total		0.00		143.92		18.64		0.97		
									Total Weighted	
Weighted CN Value	0.00		60.37		8.61		0.49		CN for Basin	
									A16	69.46

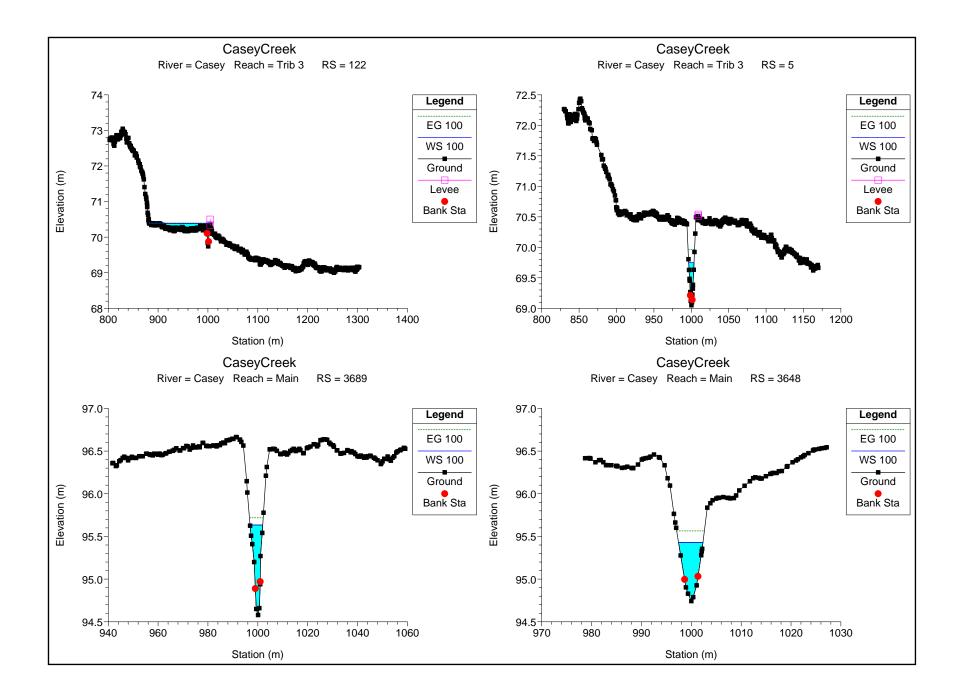

Appendix C

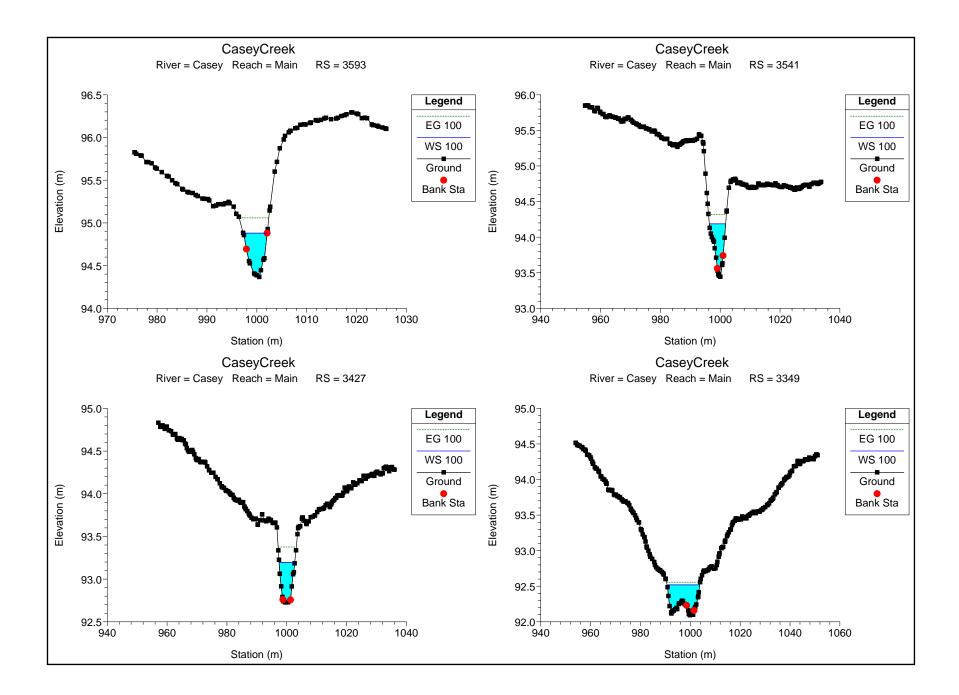
Reach Overview Figures

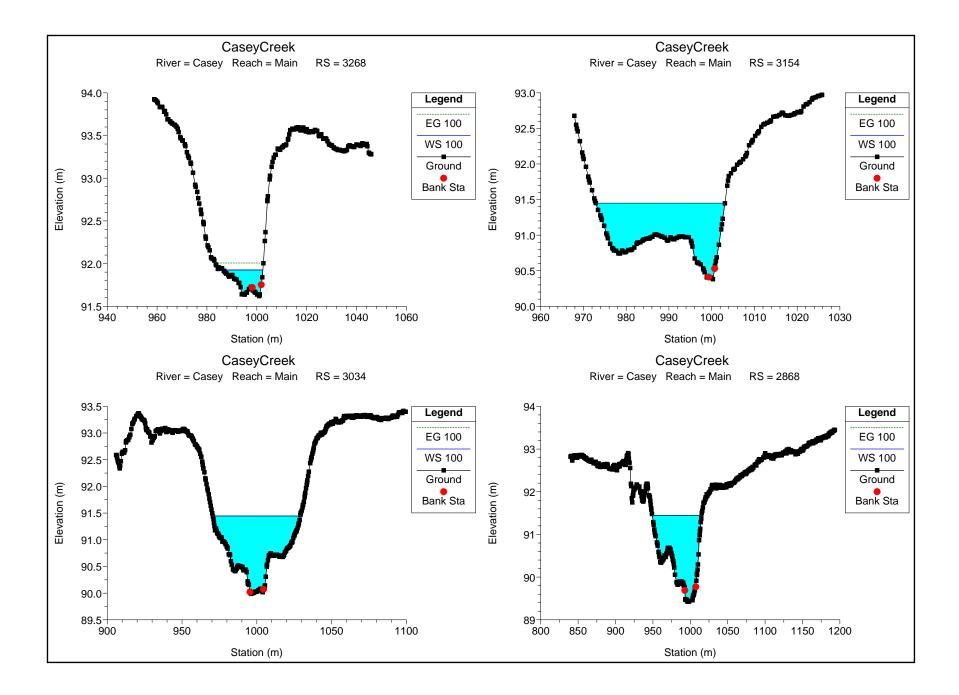


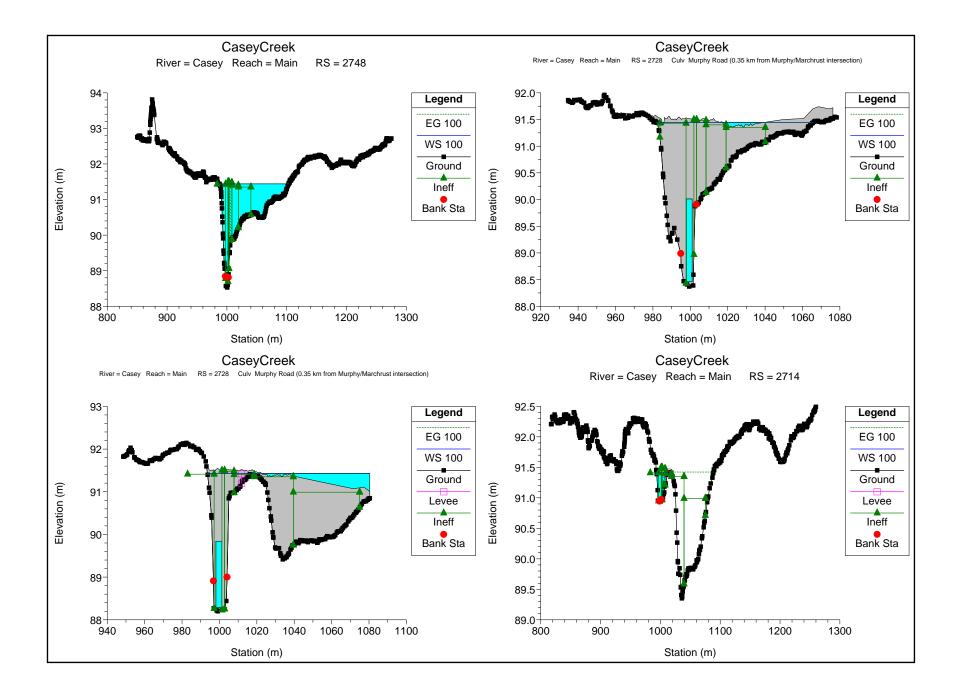


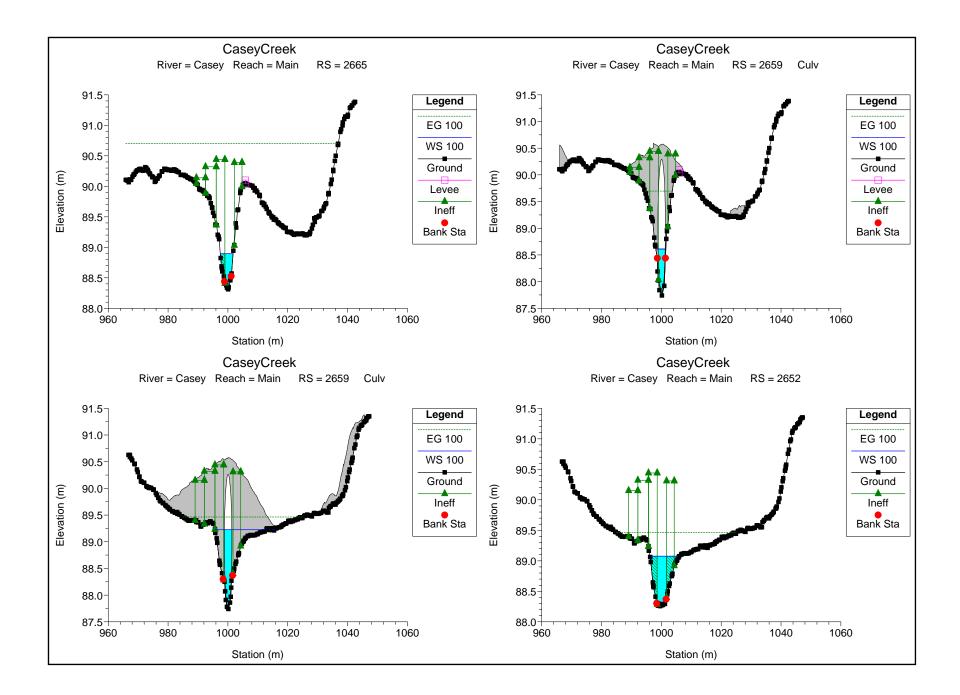


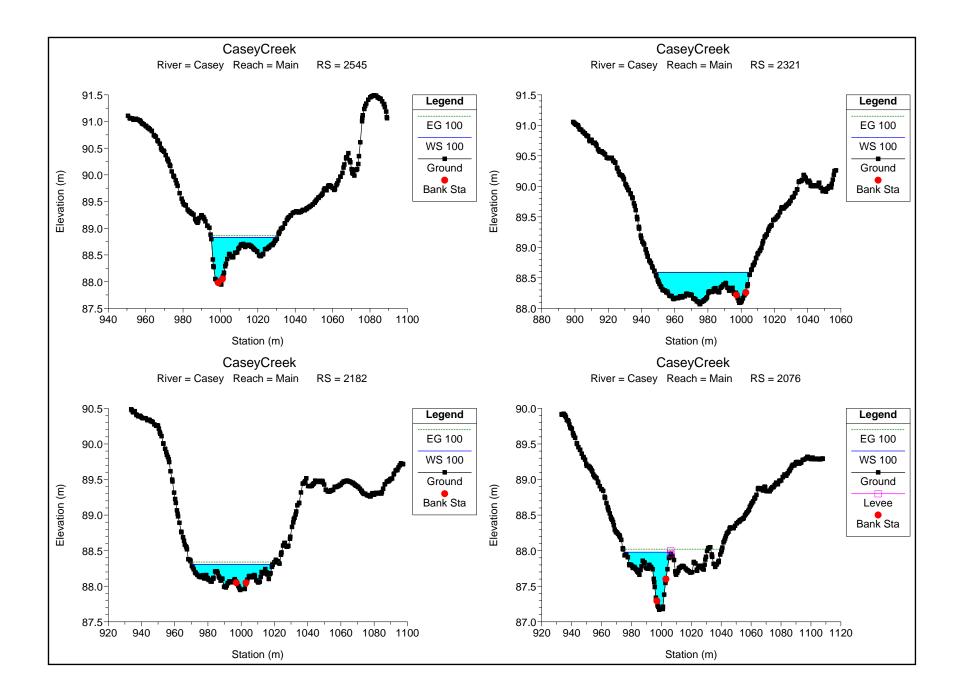

Appendix D

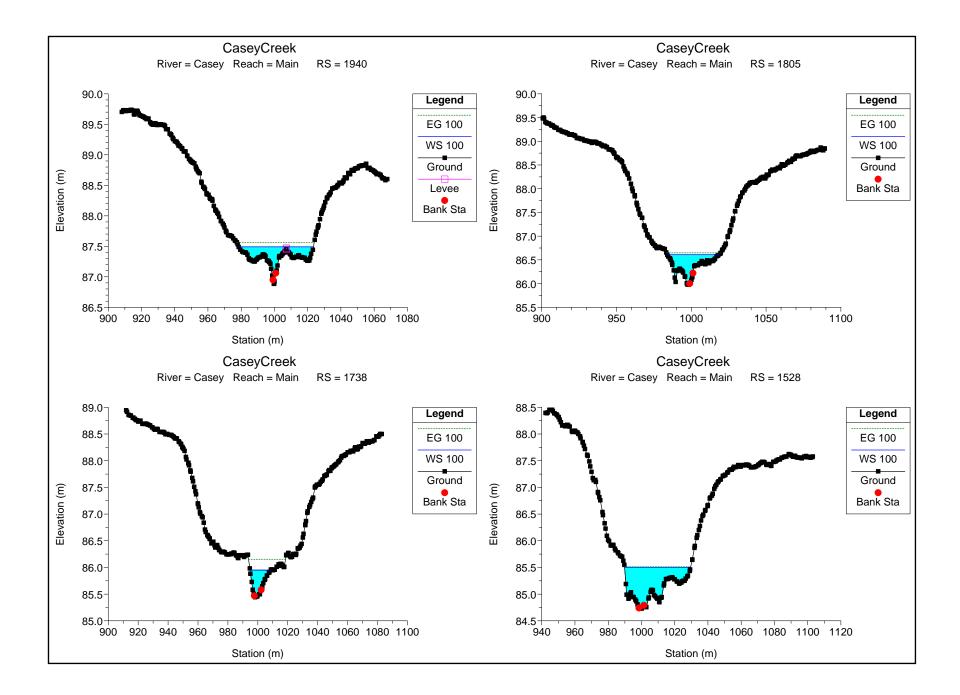

Cross-Section Plots

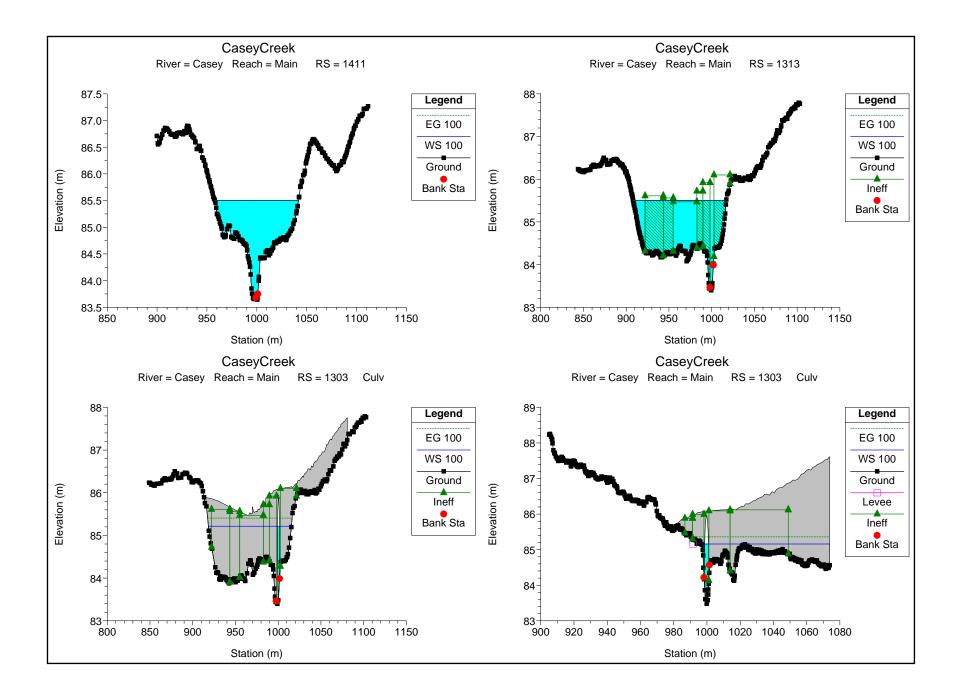


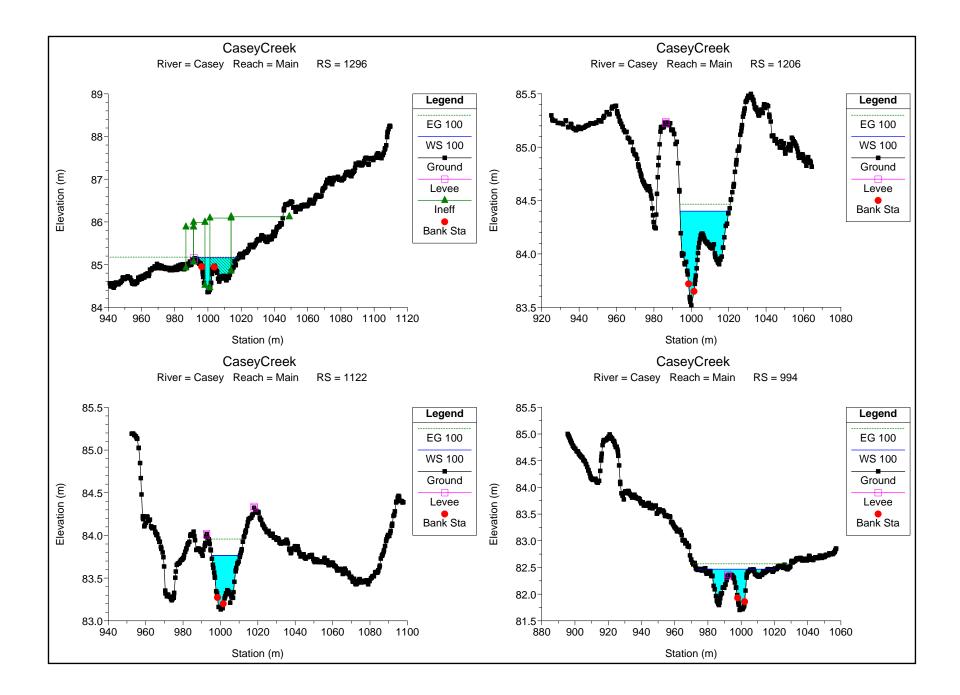


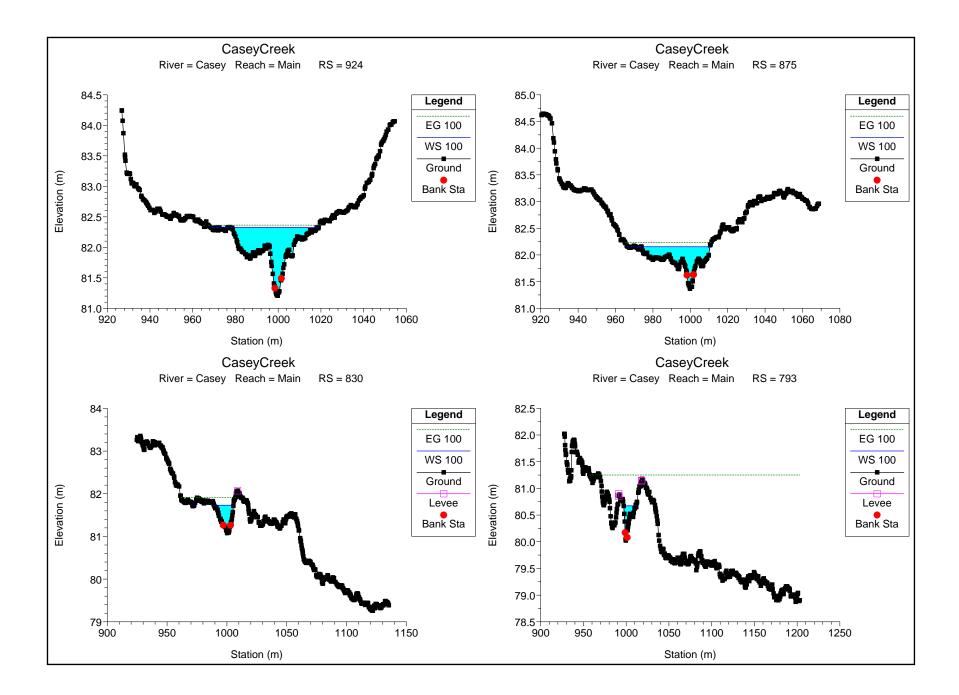


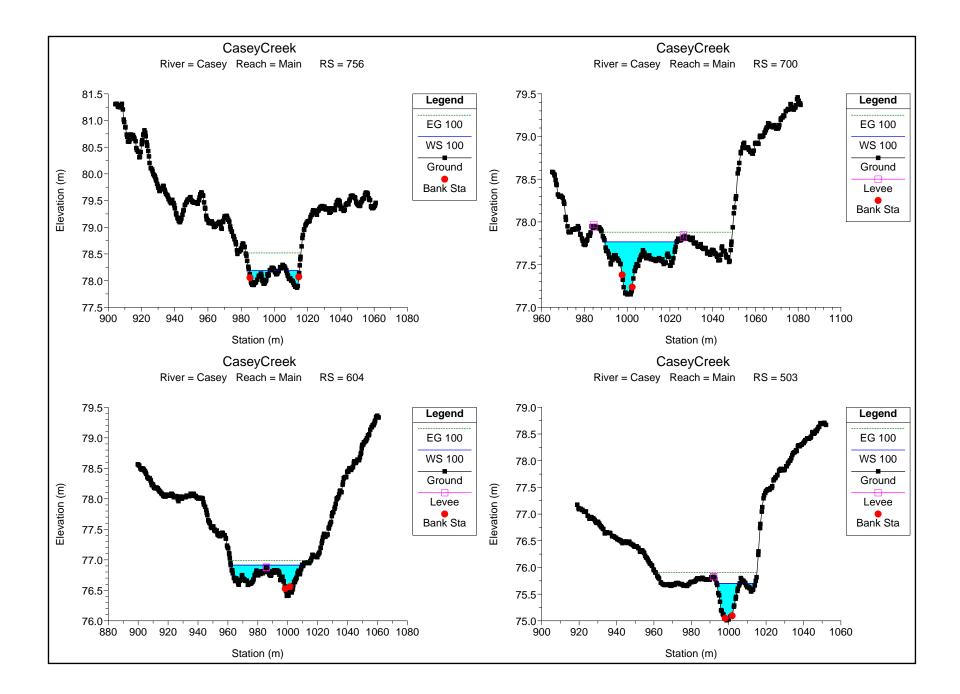


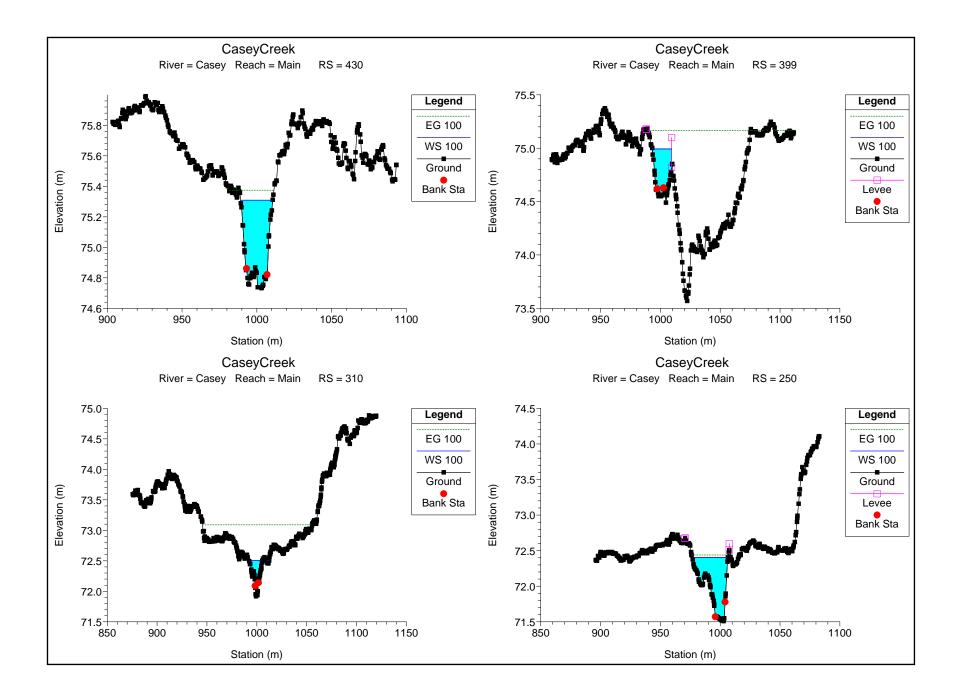


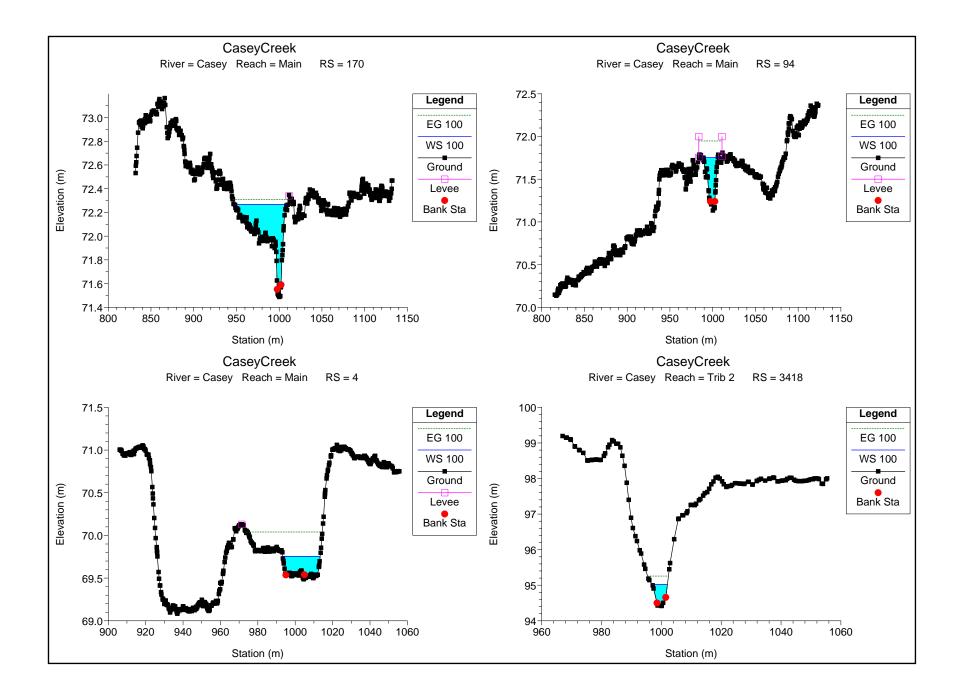


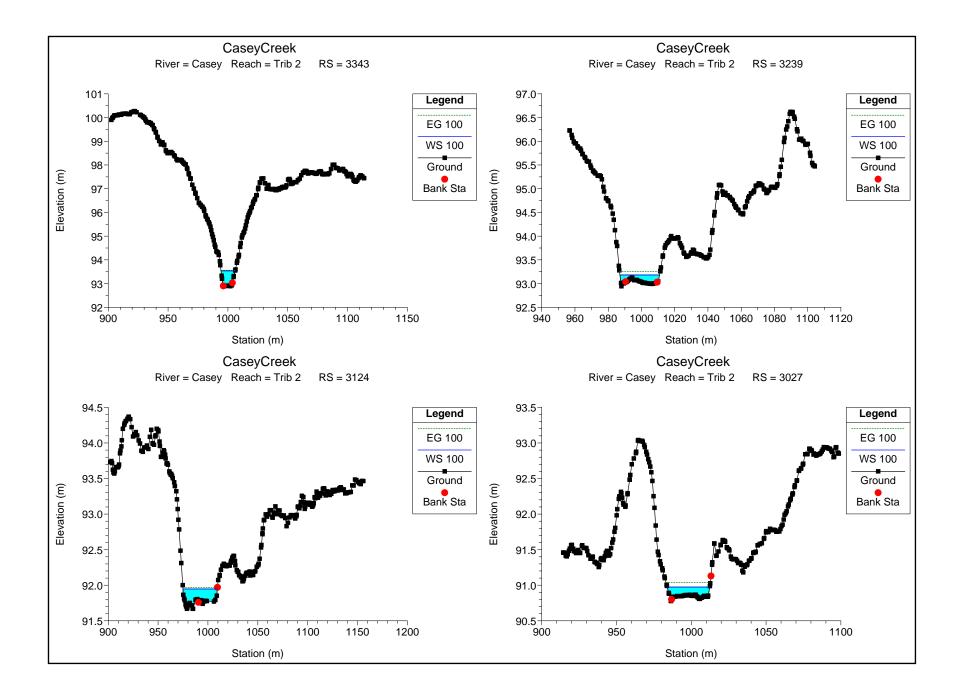


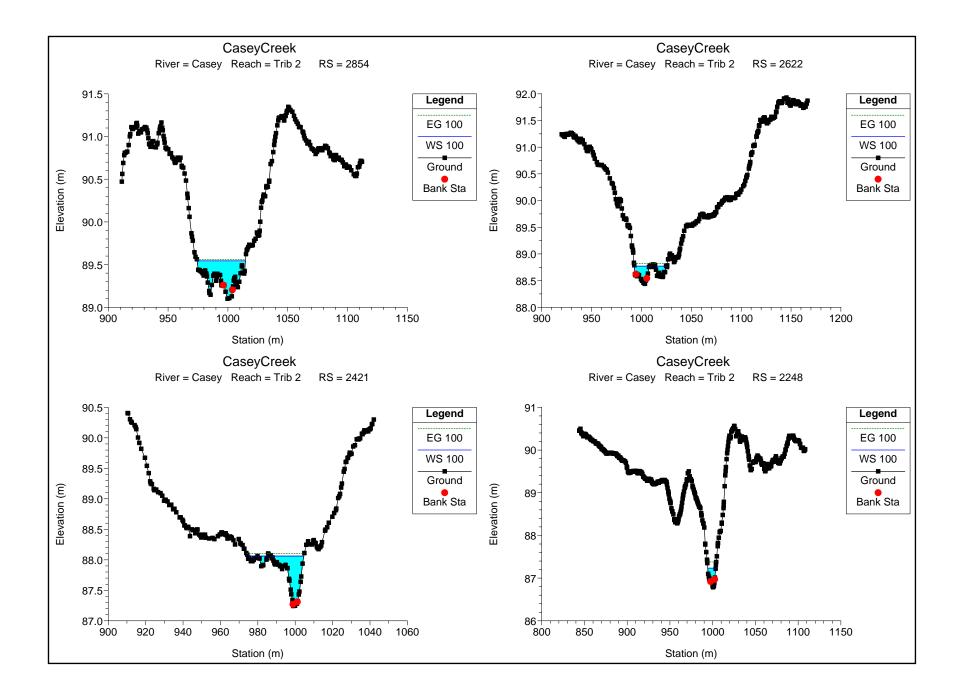


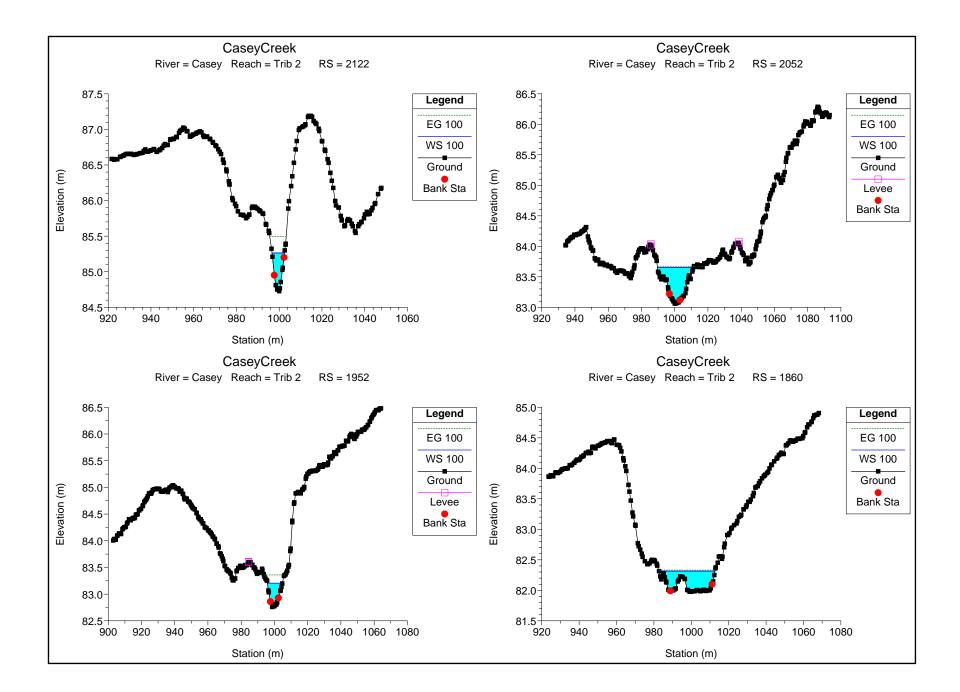


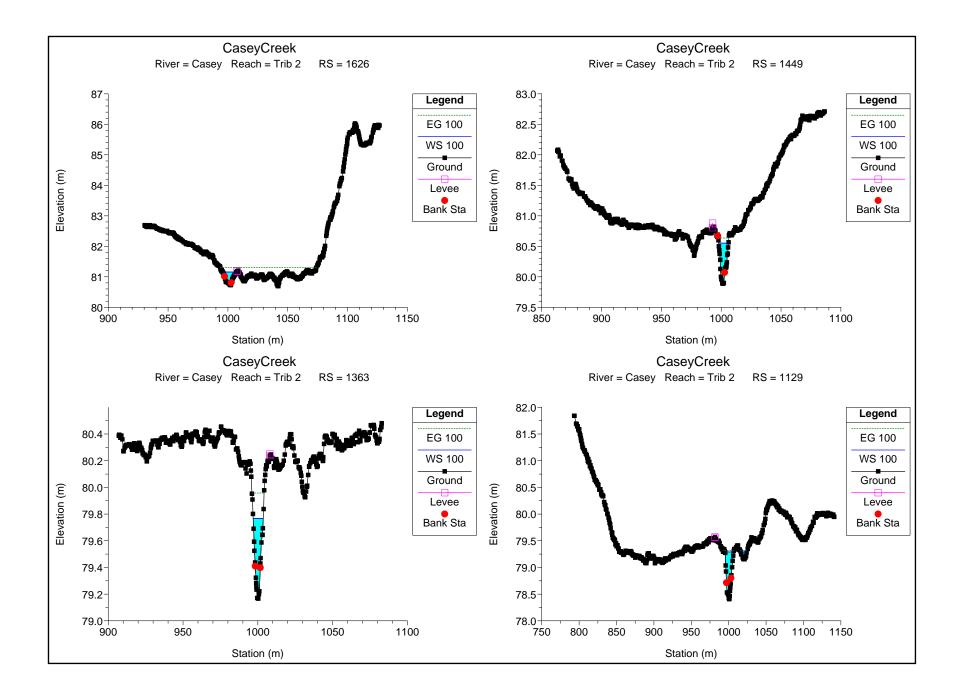


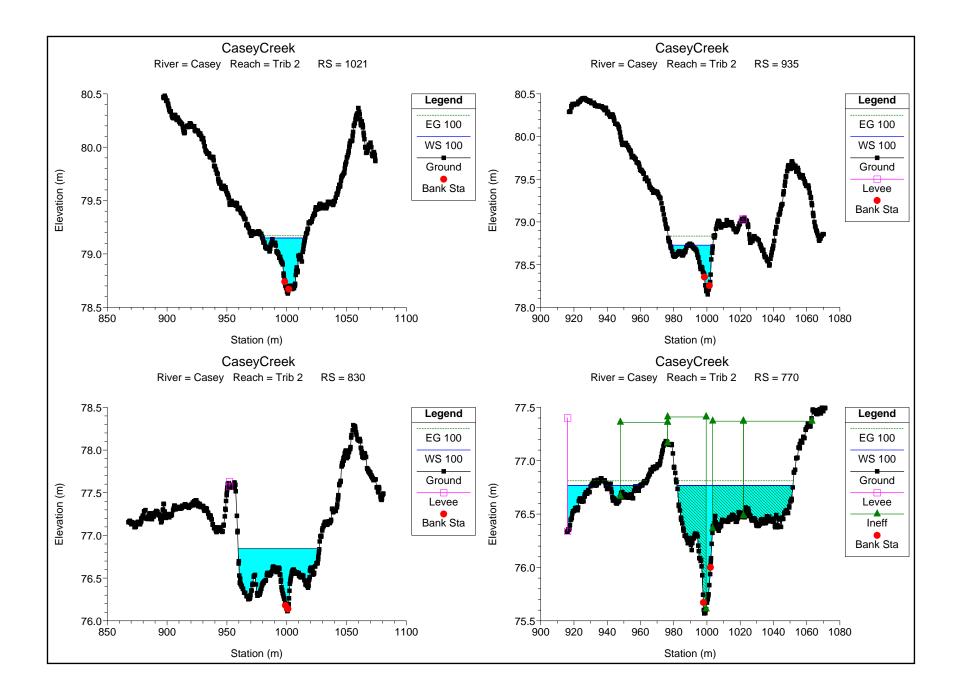


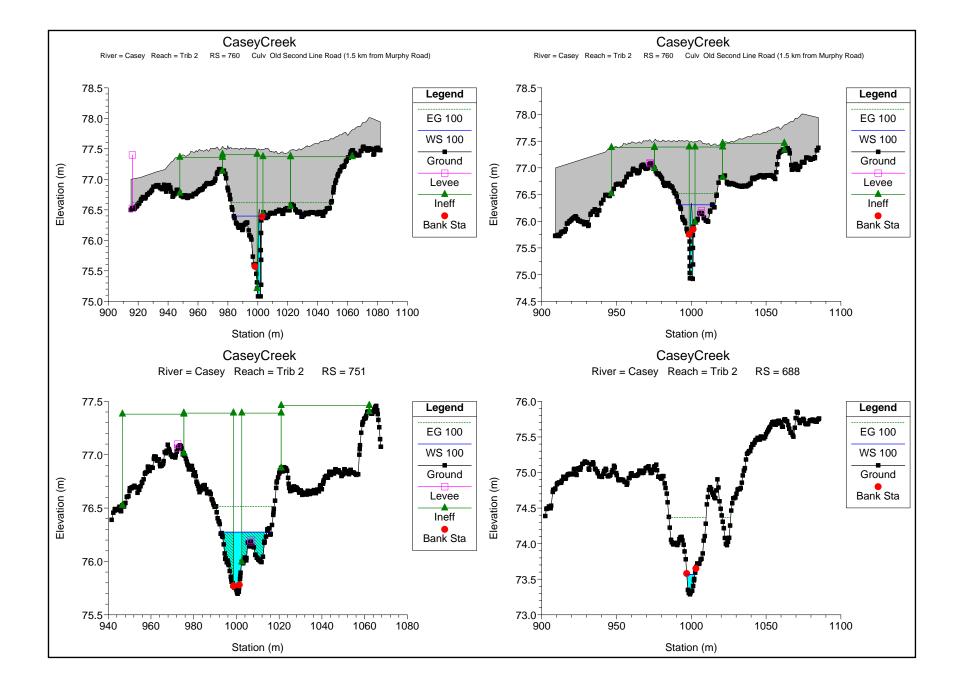


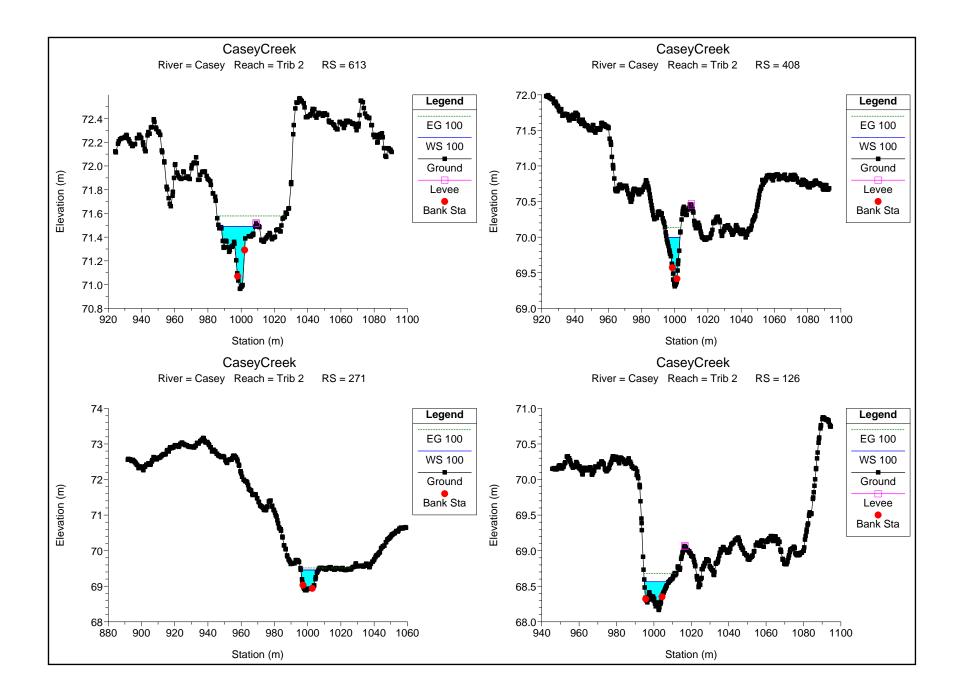


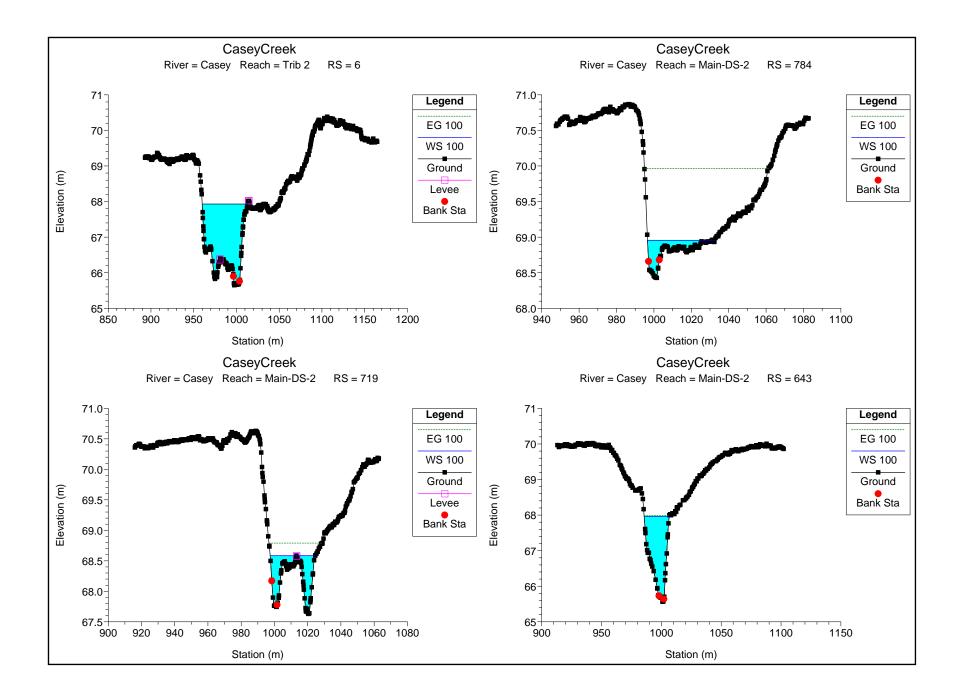


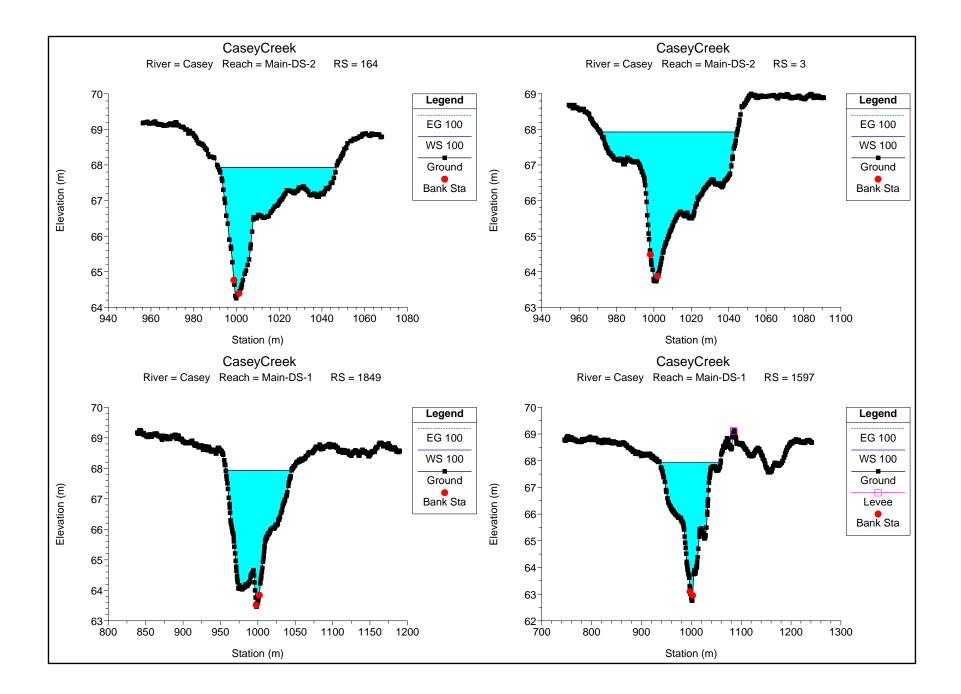


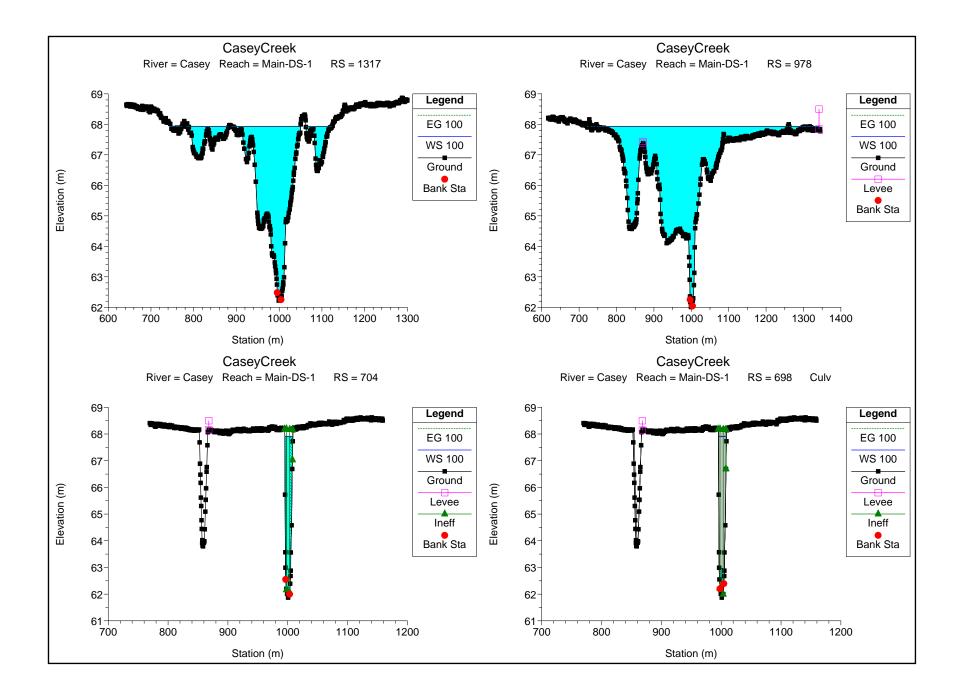


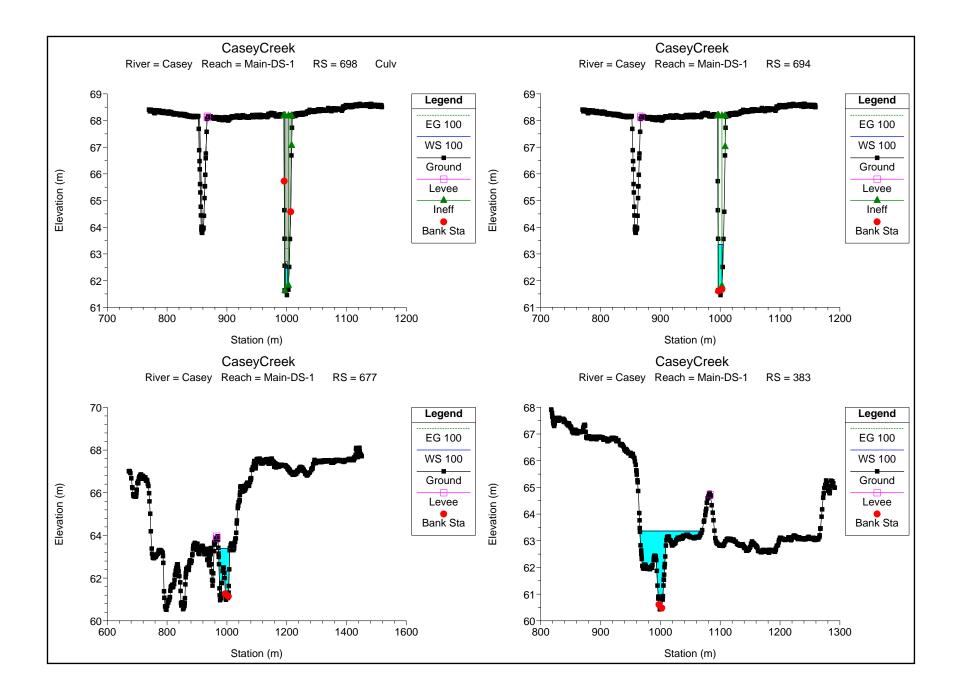


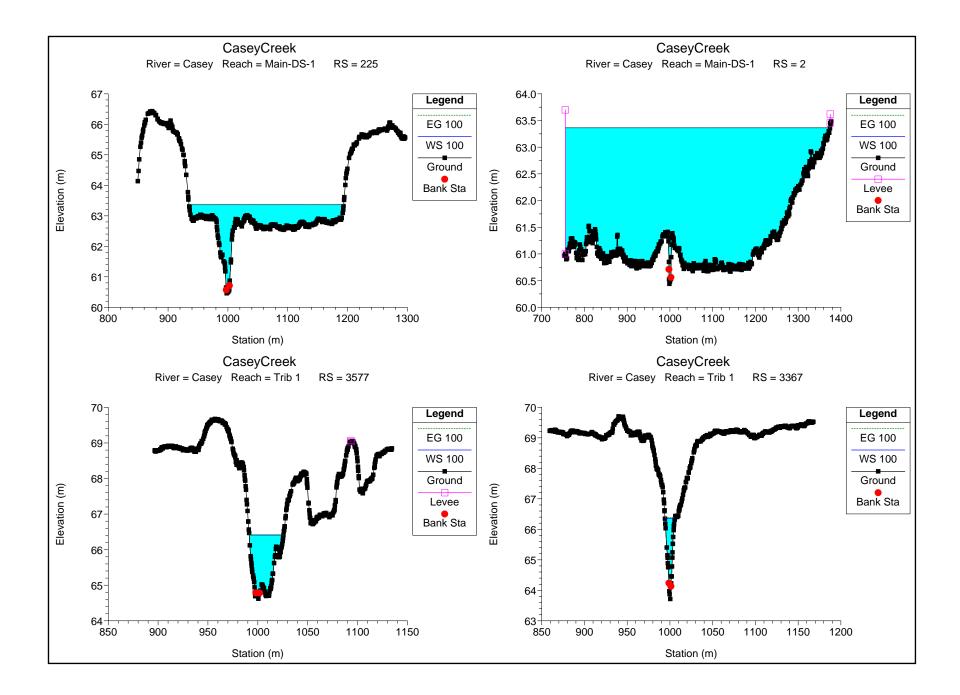


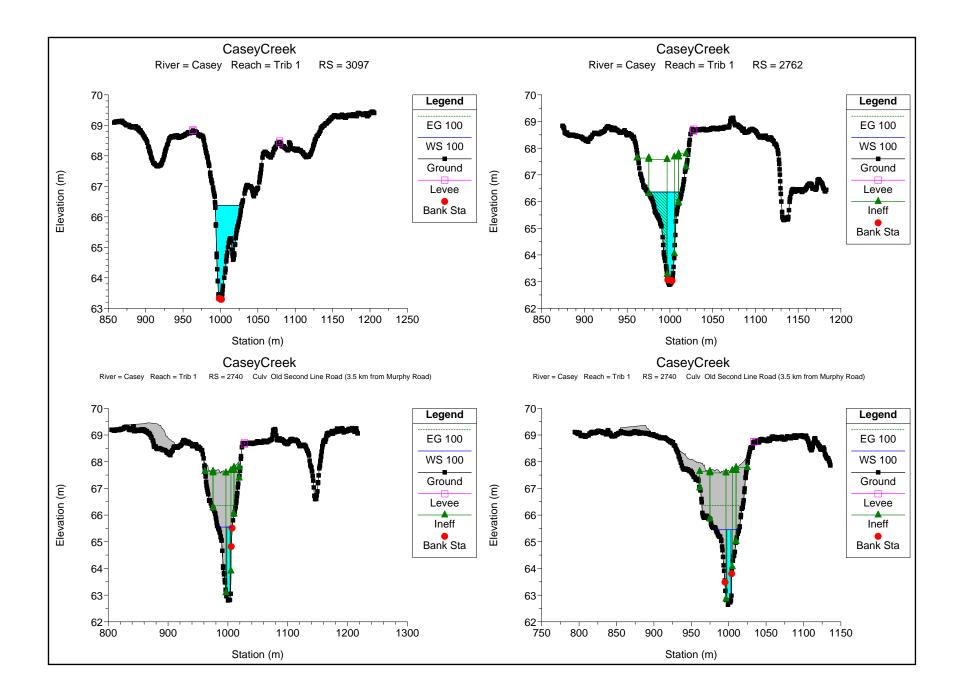


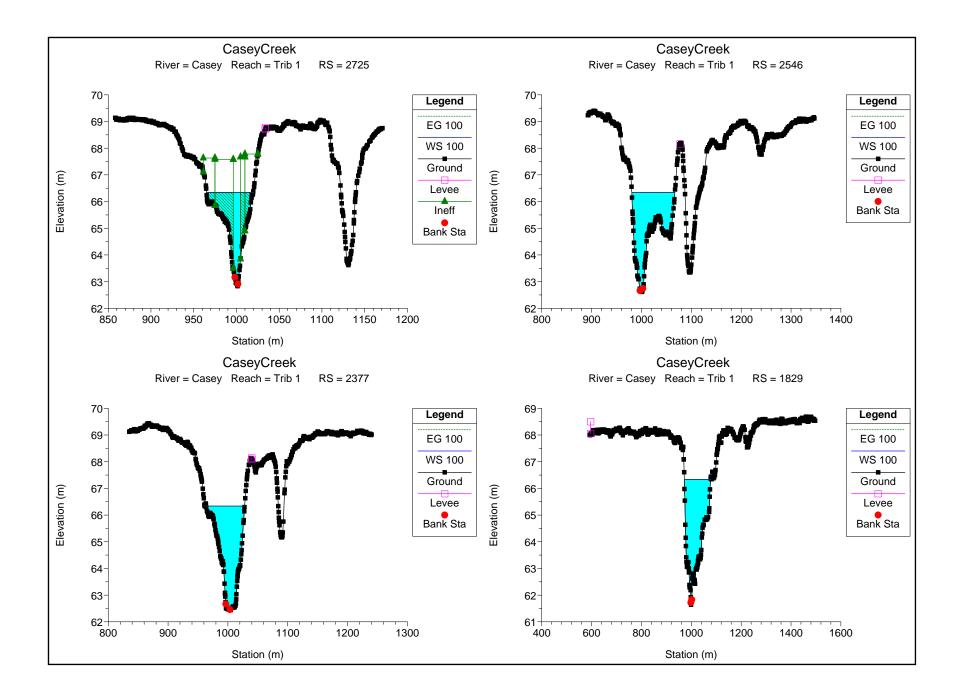


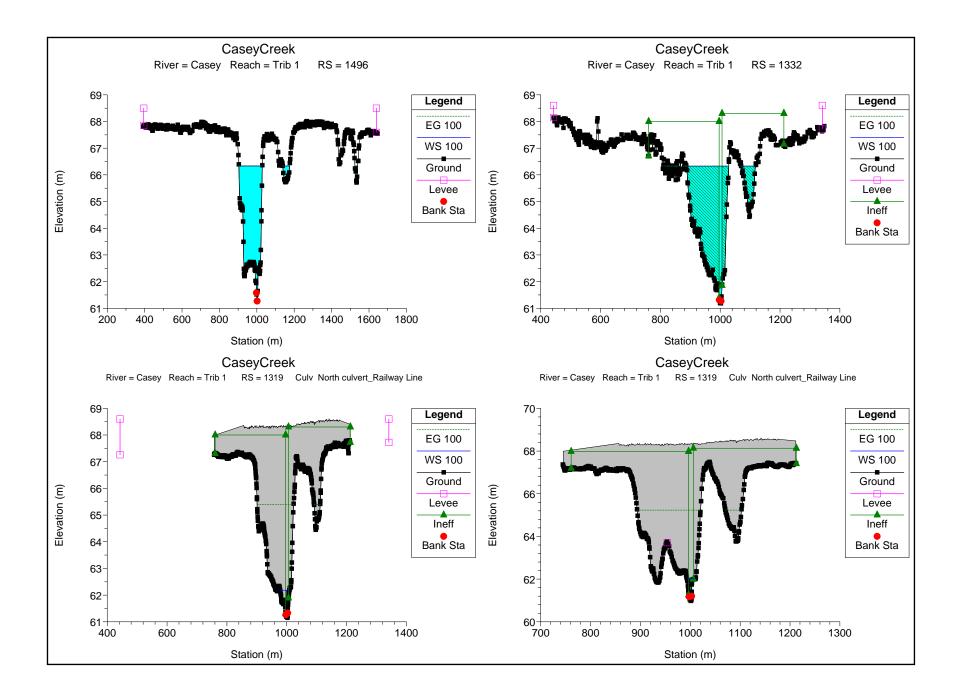


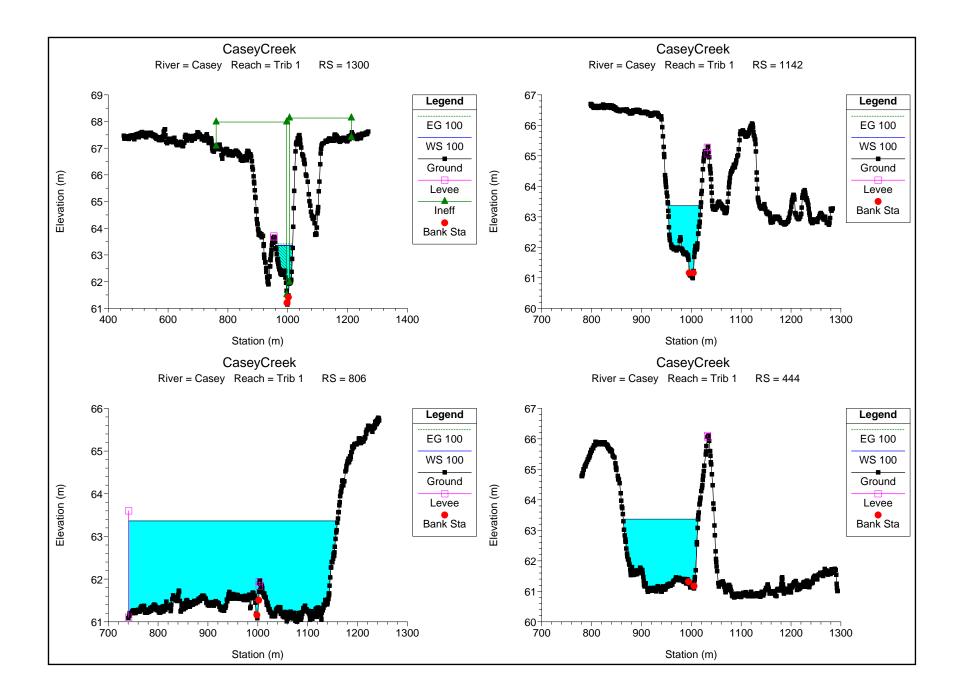


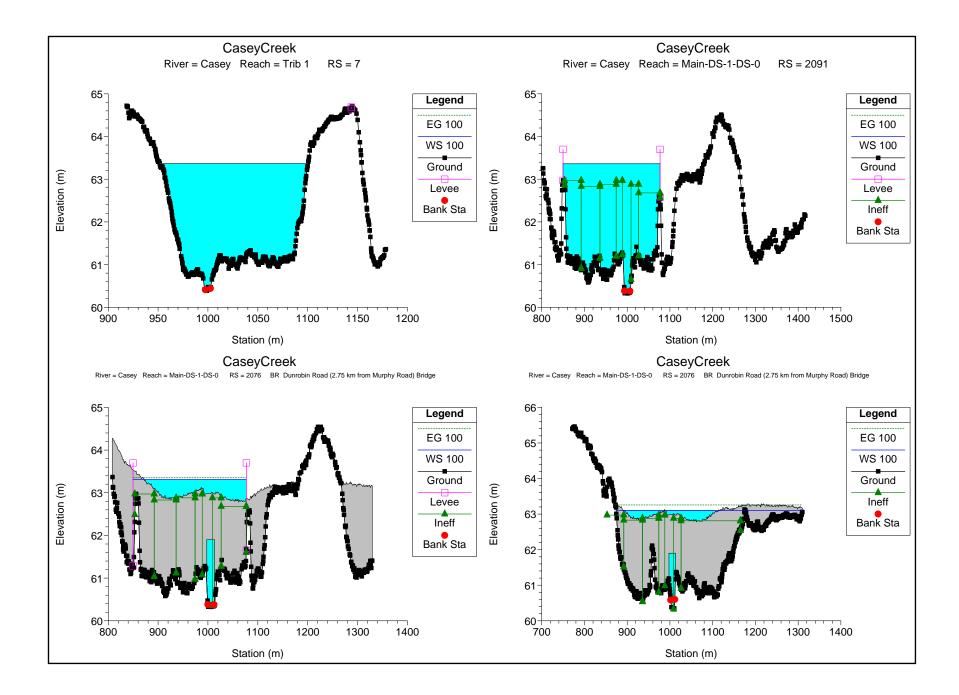


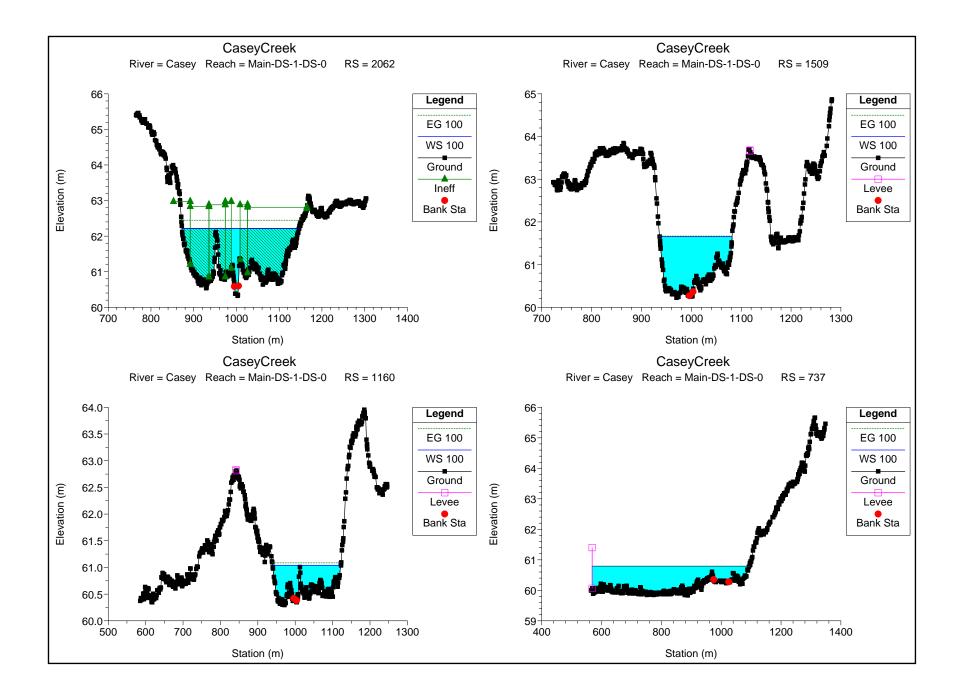


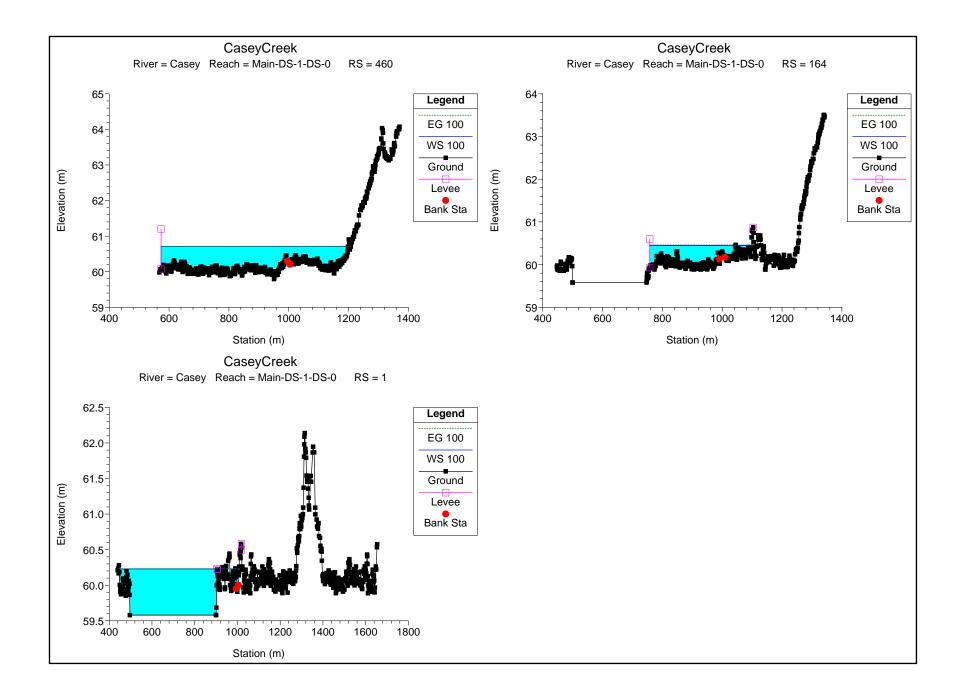


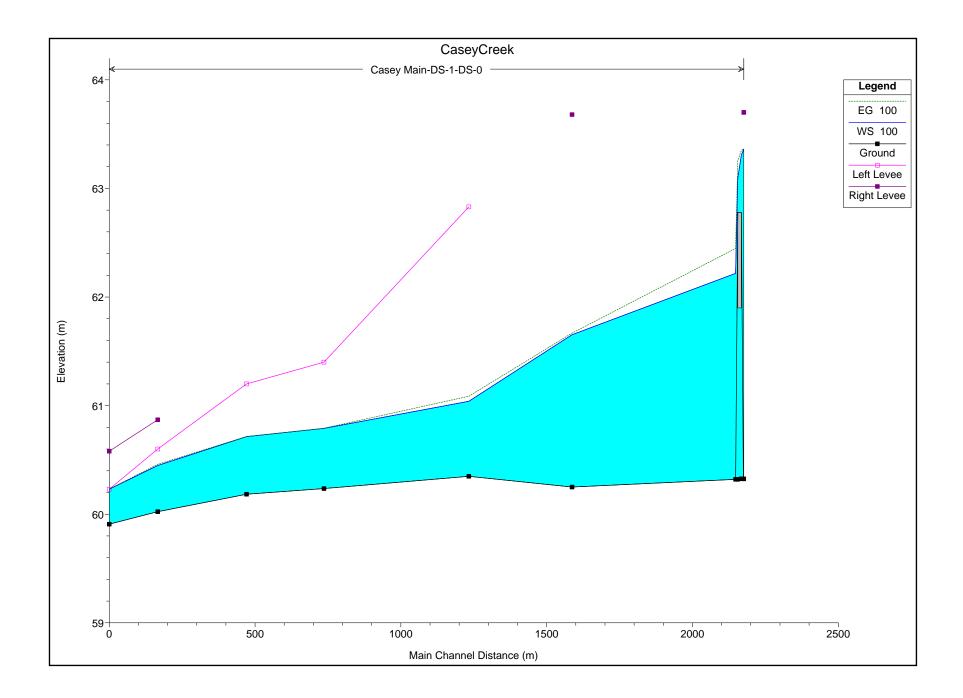


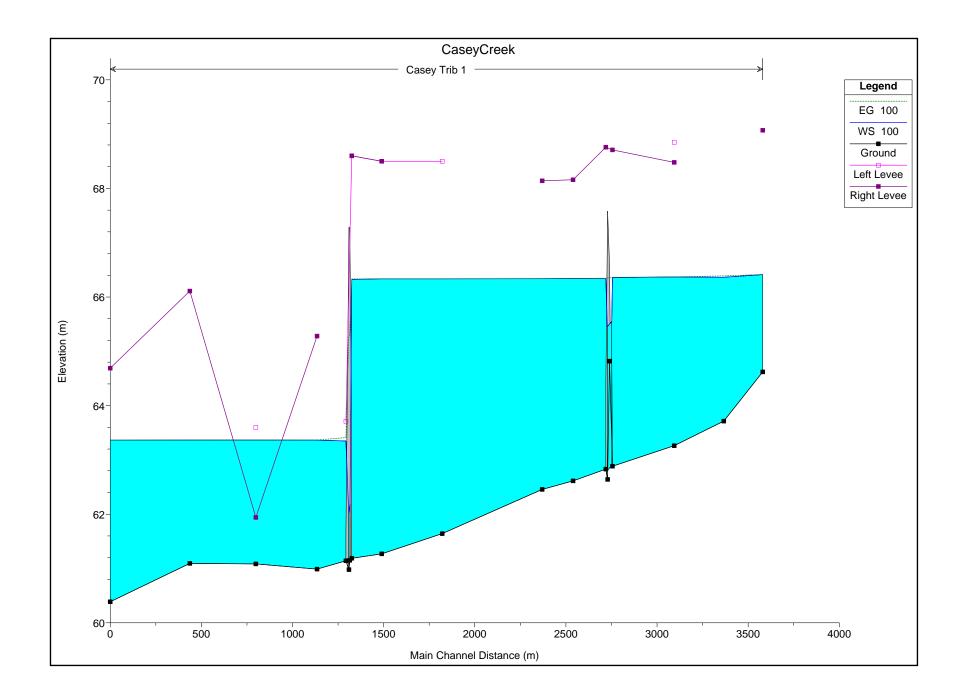


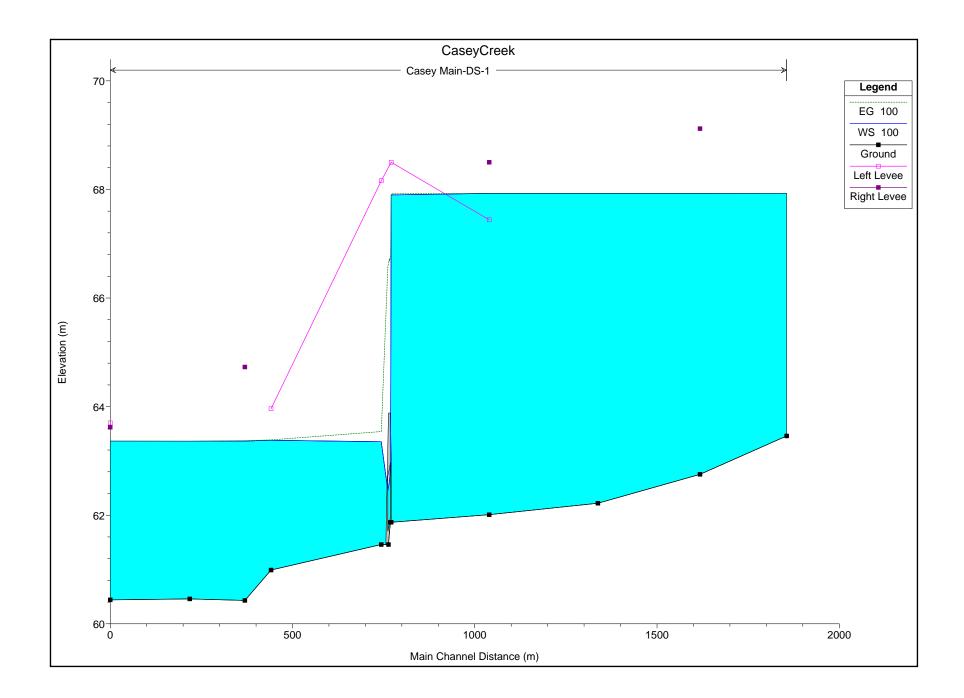


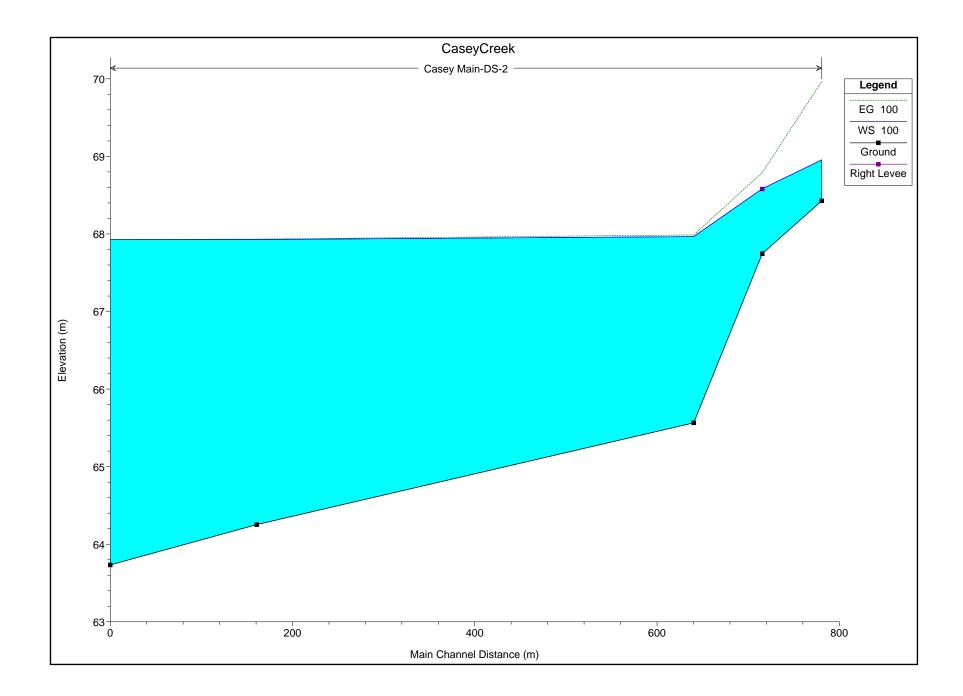


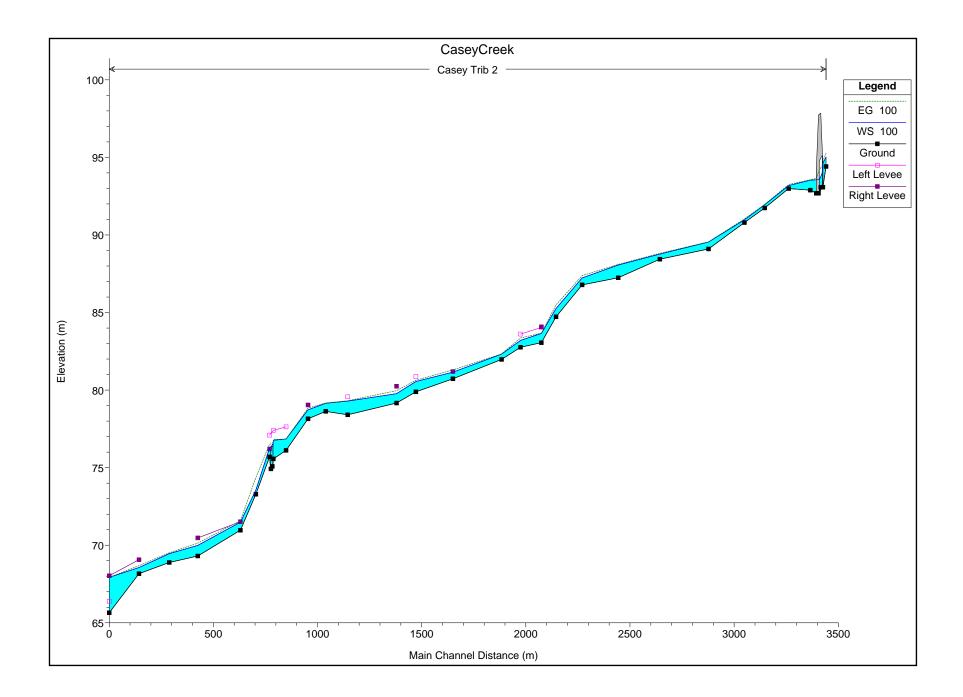


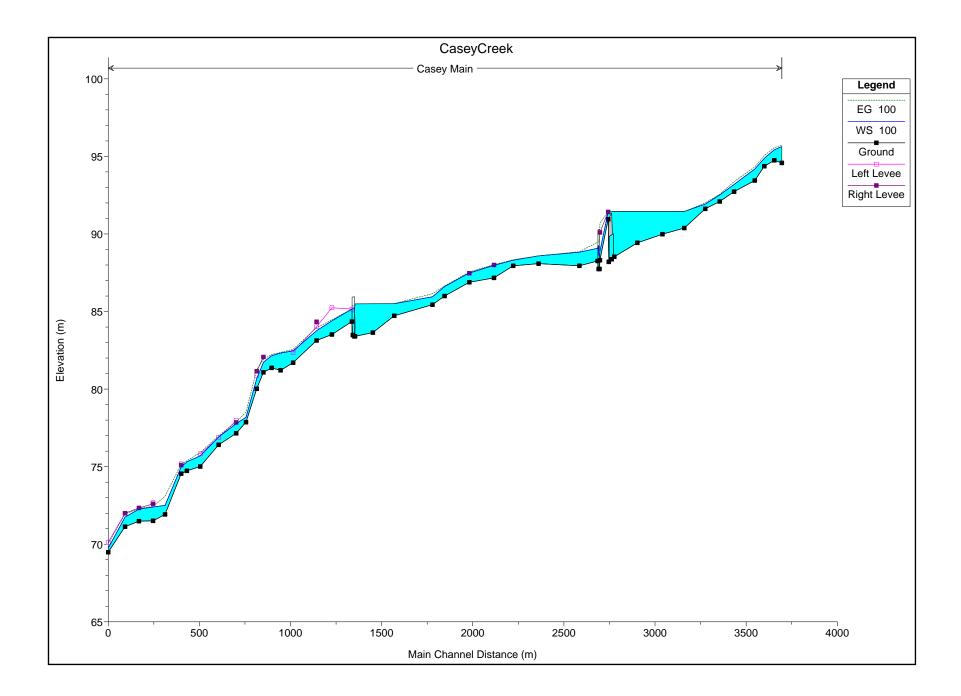


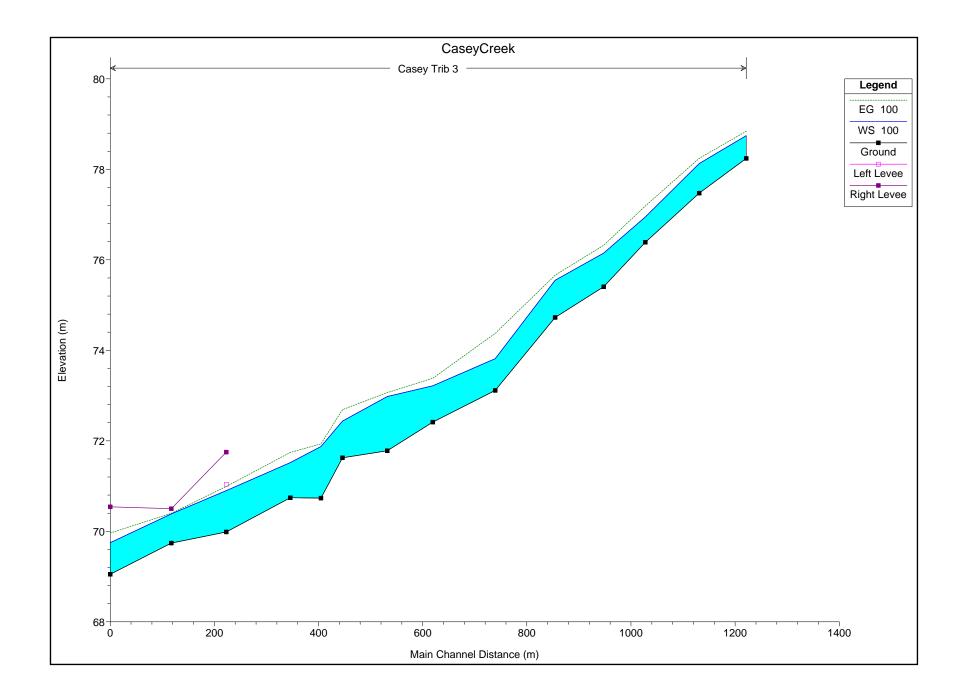


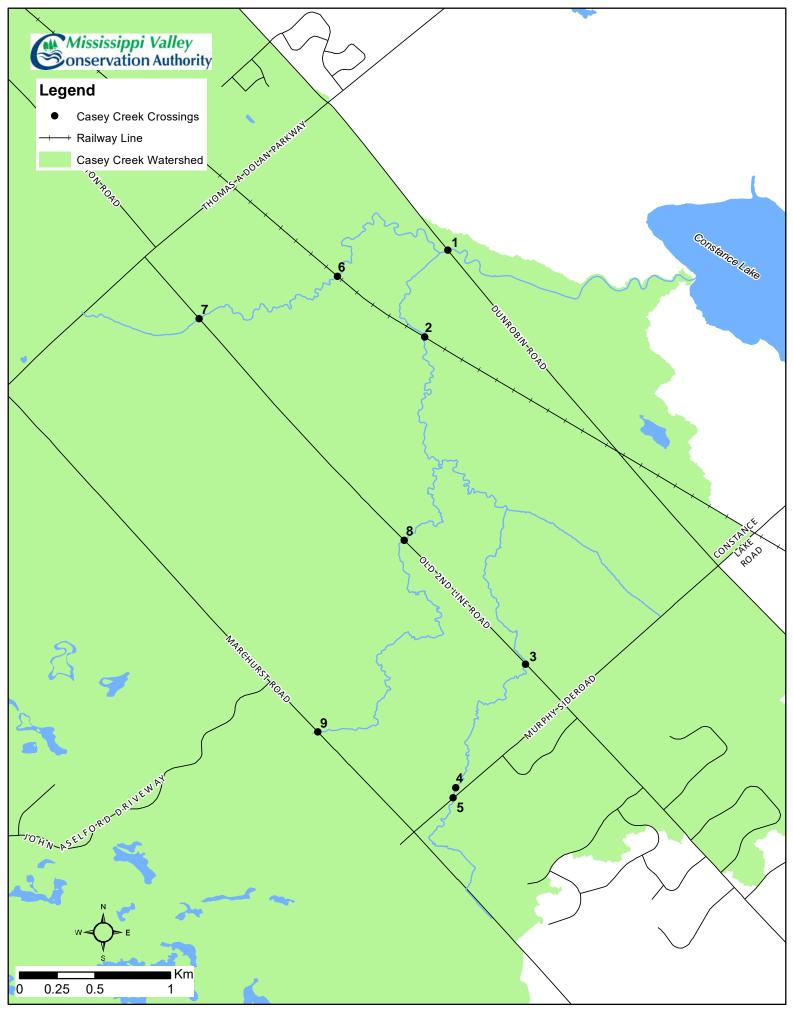












Appendix E

Structure Database

				Table B	E-1 - Existing Str	ucture Databa	ise				
Structure Location	Structure Number ¹	Cross- Section	Structure Type	Upstream Invert (m)	Downstream Invert (m)	Upstream Low Chord or Obvert (m)	Diameter or Height (m)	Width or Span (m)	Bridge Deck/Roadway Width ¹ (m)	Culvert/Bridge Length (m)	Minimum Top of Road Elevation ² (m)
Main Reach											
Dunrobin Road	1	2076	Concrete bridge, open bottom	60.33	60.33	61.9	1.55	15.4	12.1	21.3	62.8
Abandoned Railway Crossing	2	698	Concrete Box Culvert	61.97	61.71	62.97	1.0	3.0	4.6	7.9	67.7
Second Line Road	3	1303	Round Concrete Pipe	83.55	83.53	85.95	2.4	-	8.3	13.3	85.47
Farm crossing (50 m d/s of Murphy Side Road)	4	2659	Round Corrugated Metal Pipe	87.79	87.76	90.29	2.5	-	5.0	8.8	89.25
Murphy Side Road	5	2728	Concrete Box Culvert	88.46	88.29	90.01	1.55	3.05	15.8	32.9	91.35
				Tributa	ry 1 (Northwest	Tributary Rea	ch)	•			
Abandoned Railway Crossing	6	1319	Concrete Box Culvert	61.18	61.22	62.18	1.0	3.0	4.2	7.9	68.24
Second Line Road	7	2740	Concrete Box Culvert	62.9	62.8	65.55	2.65	5.4	10.6	24.6	67.58
	·			Tribu	tary 2 (Middle T	ributary Reach	ı)				
Second Line Road	8	760	Corrugated Metal Pipe Arch	75.11	74.94	76.51	1.4	1.8	7.0	12.2	77.0
Marchurst Road	9	3393	CSP Culvert	93.13	92.78	95.13	2.0	-	10.6	14.4	97.85

¹: See Figure below ²: Road width (parallel to the flow) measured from aerial photographs and Minimum top of road obtained from the DEM

This map is produced in part with data provided by the Ontario Geographic Data Exchange under License with the Ontario Ministry of Natural Resources and the Queen's Printer for Ontario, 2021

Dunrobin Road on Main

Abandoned Railway Crossing Main

Second Line Road on Main

Farm crossing on Main

Murphy Road on Main

Abandoned Railway Crossing on Tributary1 (Northwest Tributary)

Second Line Road on Tributary 1- (Northwest Tributary)

Second Line Road on Tributary 2 (Middle Tributary)

Marchurst Road on Tributary 2 (Middle Tributary Tributary)

Appendix F

Calculated Water Surface Elevations for Casey Creek

	River		Q Total	W.S.	E.G.	Vel Left	Vel Chnl	Vel Right
Reach	Sta	Profile	(m3/s)	Elev (m)	Elev (m)	(m/s)	(m/s)	(m/s)
	T						1	
Trib 3	1228	2	0.18	78.33	78.34	0.15	0.52	
Trib 3	1228	5	0.9	78.46	78.5	0.37	0.9	0.15
Trib 3	1228	10	1.66	78.54	78.6	0.47	1.11	0.3
Trib 3	1228	25	2.89	78.65	78.73	0.37	1.31	0.41
Trib 3	1228	50	3.89	78.71	78.79	0.39	1.42	0.45
Trib 3	1228	100	5	78.74	78.84	0.45	1.56	0.5
Trib 3	1141	2	0.18	77.63	77.64	0.28	0.55	0.04
Trib 3	1141	5	0.9	77.77	77.82	0.55	1.06	0.37
Trib 3	1141	10	1.66	77.86	77.93	0.65	1.33	0.54
Trib 3	1141	25	2.89	77.97	78.08	0.57	1.64	0.67
Trib 3	1141	50	3.89	78.04	78.16	0.63	1.79	0.72
Trib 3	1141	100	5	78.13	78.24	0.59	1.82	0.42
Trib 3	1037	2	0.18	76.49	76.53	0.42	0.9	0.32
Trib 3	1037	5	0.9	76.63	76.72	0.71	1.46	0.61
Trib 3	1037	10	1.66	76.72	76.84	0.86	1.76	0.78
Trib 3	1037	25	2.89	76.83	76.99	1.02	2.11	0.9
Trib 3	1037	50	3.89	76.91	77.09	1.06	2.3	1
Trib 3	1037	100	5	76.95	77.19	1.15	2.69	1.18
Trib 3	957	2	0.18	75.61	75.62	0.16	0.54	0.19
Trib 3	957	5	0.9	75.82	75.86	0.39	1	0.45
Trib 3	957	10	1.66	75.94	76	0.49	1.26	0.58
Trib 3	957	25	2.89	76.06	76.15	0.61	1.62	0.76
Trib 3	957	50	3.89	76.08	76.23	0.77	2.06	0.97
Trib 3	957	100	5	76.15	76.32	0.77	2.28	1.07
Trib 3	864	2	0.18	74.91	74.96		1	
Trib 3	864	5	0.9	75.09	75.2	0.58	1.48	0.15
Trib 3	864	10	1.66	75.2	75.35	0.72	1.74	0.43
Trib 3	864	25	2.89	75.37	75.52	0.57	1.85	0.59
Trib 3	864	50	3.89	75.5	75.61	0.44	1.69	0.56
Trib 3	864	100	5	75.55	75.66	0.53	1.81	0.6
Trib 3	749	2	0.18	73.39	73.41		0.51	
Trib 3	749	5	0.9	73.63	73.68	0.3	0.98	0.28
Trib 3	749	10	1.66	73.77	73.85	0.44	1.26	0.42

Water Surface Elevations for Various Return periods

	River		Q Total	W.S.	E.G.	Vel Left	Vel Chnl	Vel Right
Reach	Sta	Profile	(m3/s)	Elev (m)	Elev (m)	(m/s)	(m/s)	(m/s)
	•							
Trib 3	749	25	2.89	73.92	74.04	0.59	1.62	0.61
Trib 3	749	50	3.89	73.71	74.27	1.13	3.38	1.07
Trib 3	749	100	5	73.82	74.37	1.22	3.44	1.19
Trib 3	625	2	0.18	72.54	72.59		0.95	
Trib 3	625	5	0.9	72.72	72.82		1.42	0.08
Trib 3	625	10	1.66	72.83	72.97		1.66	0.38
Trib 3	625	25	2.89	72.98	73.14		1.78	0.59
Trib 3	625	50	3.89	73.1	73.26	0.32	1.79	0.62
Trib 3	625	100	5	73.22	73.38	0.47	1.84	0.66
Trib 3	537	2	0.18	72.06	72.07	0.06	0.35	0.06
Trib 3	537	5	0.9	72.36	72.38	0.24	0.72	0.27
Trib 3	537	10	1.66	72.53	72.57	0.32	0.93	0.37
Trib 3	537	25	2.89	72.73	72.79	0.42	1.17	0.48
Trib 3	537	50	3.89	72.86	72.93	0.49	1.32	0.55
Trib 3	537	100	5	72.98	73.06	0.55	1.46	0.61
Trib 3	449	2	0.18	71.78	71.83		1.01	
Trib 3	449	5	0.9	71.97	72.09		1.49	
Trib 3	449	10	1.66	72.09	72.25		1.74	
Trib 3	449	25	2.89	72.24	72.44		1.99	
Trib 3	449	50	3.89	72.34	72.57		2.12	
Trib 3	449	100	5	72.44	72.69		2.23	
Trib 3	408	2	0.18	71.03	71.03	0.07	0.27	0.11
Trib 3	408	5	0.9	71.29	71.31	0.21	0.59	0.27
Trib 3	408	10	1.66	71.45	71.47	0.29	0.78	0.36
Trib 3	408	25	2.89	71.64	71.68	0.39	0.98	0.46
Trib 3	408	50	3.89	71.77	71.82	0.44	1.1	0.52
Trib 3	408	100	5	71.87	71.93	0.51	1.25	0.58
Trib 3	350	2	0.18	70.9	70.94		0.92	
Trib 3	350	5	0.9	71.09	71.17		1.25	0.13
Trib 3	350	10	1.66	71.24	71.33	0.17	1.33	0.35
Trib 3	350	25	2.89	71.44	71.54	0.35	1.42	0.45
Trib 3	350	50	3.89	71.58	71.69	0.43	1.49	0.47
Trib 3	350	100	5	71.52	71.74	0.58	2.14	0.68
T 11 0				70.00	70.05			
Trib 3	227	2	0.18	70.26	70.27		0.45	0.01

	River		Q Total	W.S.	E.G.	Vel Left	Vel Chnl	Vel Right
Reach	Sta	Profile	(m3/s)	Elev (m)	Elev (m)	(m/s)	(m/s)	(m/s)
Trib 3	227	5	0.9	70.52	70.55	0.12	0.8	0.22
Trib 3	227	10	1.66	70.62	70.68	0.26	1.12	0.35
Trib 3	227	25	2.89	70.68	70.82	0.45	1.71	0.59
Trib 3	227	50	3.89	70.71	70.93	0.59	2.16	0.77
Trib 3	227	100	5	70.9	70.99	0.5	1.57	0.32
Trib 3	122	2	0.18	69.98	69.99		0.47	0.16
Trib 3	122	5	0.9	70.18	70.22	0.08	0.89	0.37
Trib 3	122	10	1.66	70.26	70.29	0.16	0.98	0.39
Trib 3	122	25	2.89	70.31	70.33	0.22	0.95	0.31
Trib 3	122	50	3.89	70.35	70.36	0.24	0.91	0.31
Trib 3	122	100	5	70.38	70.4	0.25	0.85	0.31
Trib 3	5	2	0.18	69.18	69.22		0.92	0.23
Trib 3	5	5	0.9	69.34	69.44	0.37	1.44	0.52
Trib 3	5	10	1.66	69.45	69.58	0.55	1.72	0.69
Trib 3	5	25	2.89	69.58	69.75	0.69	1.98	0.81
Trib 3	5	50	3.89	69.67	69.86	0.79	2.15	0.9
Trib 3	5	100	5	69.75	69.96	0.89	2.32	1
Main	3689	2	0.07	94.93	94.93	0.02	0.14	
Main	3689	5	0.42	95.14	95.15	0.13	0.46	0.06
Main	3689	10	0.84	95.28	95.3	0.21	0.7	0.1
Main	3689	25	1.58	95.43	95.48	0.31	1	0.18
Main	3689	50	2.21	95.54	95.6	0.38	1.19	0.26
Main	3689	100	2.92	95.63	95.72	0.46	1.37	0.33
Main	3648	2	0.07	94.91	94.91		0.37	
Main	3648	5	0.42	95.07	95.09	0.15	0.73	0.09
Main	3648	10	0.84	95.16	95.21	0.28	0.98	0.24
Main	3648	25	1.58	95.28	95.36	0.43	1.3	0.39
Main	3648	50	2.21	95.36	95.47	0.53	1.51	0.49
Main	3648	100	2.92	95.43	95.56	0.61	1.7	0.58
Main	3593	2	0.07	94.46	94.48		0.73	
Main	3593	5	0.42	94.57	94.64		1.11	
Main	3593	10	0.84	94.65	94.74		1.33	
Main	3593	25	1.58	94.75	94.87	0.24	1.59	
Main	3593	50	2.21	94.81	94.97	0.4	1.74	
Main	3593	100	2.92	94.88	95.06	0.49	1.88	

	River		Q Total	W.S.	E.G.	Vel Left	Vel Chnl	Vel Right
Reach	Sta	Profile	(m3/s)	Elev (m)	Elev (m)	(m/s)	(m/s)	(m/s)
		Γ	Γ	Γ	Τ			ľ
Main	3541	2	0.07	93.6	93.61	0.09	0.39	
Main	3541	5	0.42	93.78	93.81	0.31	0.8	0.1
Main	3541	10	0.84	93.89	93.95	0.44	1.08	0.25
Main	3541	25	1.58	94.03	94.12	0.5	1.4	0.41
Main	3541	50	2.21	94.11	94.22	0.61	1.63	0.51
Main	3541	100	2.92	94.19	94.32	0.72	1.79	0.59
Main	3427	2	0.07	92.78	92.8	0.17	0.64	0.18
Main	3427	5	0.42	92.87	92.94	0.47	1.14	0.44
Main	3427	10	0.84	92.95	93.05	0.6	1.41	0.56
Main	3427	25	1.58	93.05	93.19	0.75	1.74	0.7
Main	3427	50	2.21	93.13	93.28	0.84	1.86	0.72
Main	3427	100	2.92	93.19	93.38	0.95	2.05	0.83
Main	3349	2	0.07	92.19	92.2	0.12	0.29	0.06
Main	3349	5	0.42	92.29	92.31	0.25	0.54	0.22
Main	3349	10	0.84	92.36	92.37	0.34	0.68	0.29
Main	3349	25	1.58	92.43	92.45	0.46	0.85	0.39
Main	3349	50	2.21	92.47	92.5	0.55	0.97	0.46
Main	3349	100	2.92	92.52	92.56	0.62	1.09	0.53
Main	3268	2	0.07	91.67	91.69	0.4	0.62	
Main	3268	5	0.42	91.74	91.77	0.55	0.92	
Main	3268	10	0.84	91.78	91.83	0.69	1.17	0.2
Main	3268	25	1.58	91.84	91.91	0.76	1.4	0.39
Main	3268	50	2.21	91.89	91.96	0.72	1.49	0.5
Main	3268	100	2.92	91.93	92.01	0.78	1.59	0.57
Main	3154	2	0.07	91.02	91.02	0.01	0.03	0.01
Main	3154	5	0.42	91.24	91.24	0.03	0.08	0.03
Main	3154	10	0.84	91.42	91.42	0.05	0.1	0.04
Main	3154	25	1.58	91.65	91.65	0.06	0.12	0.05
Main	3154	50	2.21	91.44	91.44	0.12	0.25	0.1
Main	3154	100	2.92	91.45	91.45	0.16	0.33	0.13
Main	3034	2	0.07	91.02	91.02	0	0	0
Main	3034	5	0.42	91.24	91.24	0.01	0.02	0.01
Main	3034	10	0.84	91.42	91.42	0.01	0.03	0.01
Main	3034	25	1.58	91.65	91.65	0.01	0.03	0.01

- ·	River		Q Total	W.S.	E.G.	Vel Left	Vel Chnl	Vel Right
Reach	Sta	Profile	(m3/s)	Elev (m)	Elev (m)	(m/s)	(m/s)	(m/s)
	2024	50	2.24			0.04	0.00	0.00
Main	3034	50	2.21	91.44	91.44	0.04	0.08	0.03
Main	3034	100	2.92	91.45	91.45	0.05	0.1	0.04
Main	2868	2	0.07	91.02	91.02	0	0	0
Main	2868	5	0.07	91.02	91.02	0	0.02	0
Main	2868	10	0.42	91.42	91.42	0	0.02	0
Main	2868	25	1.58	91.65	91.65	0	0.03	0
Main	2868	50	2.21	91.44	91.44	0	0.07	0
Main	2868	100	2.92	91.45	91.45	0.01	0.09	0
Main	2748	2	0.07	91.02	91.02		0.01	0
Main	2748	5	0.42	91.24	91.24		0.04	0
Main	2748	10	0.84	91.42	91.42		0.06	0
Main	2748	25	1.58	91.65	91.65	0	0.09	0
Main	2748	50	2.21	91.43	91.43	0.01	0.15	0
Main	2748	100	2.92	91.44	91.45	0.01	0.19	0.01
Main	2728		Culvert					
Main	2714	2	0.1	90.99	91.02	0.08	0.73	
Main	2714	5	0.84	91.14	91.24	0.15	1.41	
Main	2714	10	1.74	91.26	91.42	0.19	1.81	
Main	2714	25	3.39	91.42	91.65	0.19	2.24	0.06
Main	2714	50	4.83	91.42	91.42	0.04	0.48	0.05
Main	2714	100	6.47	91.42	91.42	0.05	0.65	0.07
Main	2665	2	0.1	88.41	88.49		1.3	
Main	2665	5	0.84	88.5	89.12		3.49	
Main	2665	10	1.74	88.58	89.52		4.29	0.07
Main	2665	25	3.39	88.71	89.95		4.93	0.13
Main	2665	50	4.83	88.75	90.72		6.23	0.18
Main	2665	100	6.47	88.89	90.7		5.97	0.19
Main	2659		Culvert					
	2039		Cuivert					
Main	2652	2	0.1	88.33	88.36		0.72	
Main	2652	5	0.84	88.56	88.62		1.02	0.05
Main	2652	10	1.74	88.73	88.82		1.32	0.07
Main	2652	25	3.39	88.89	89.07		1.88	0.11
Main	2652	50	4.83	88.98	89.26		2.36	0.06

	River		Q Total	W.S.	E.G.	Vel Left	Vel Chnl	Vel Right
Reach	Sta	Profile	(m3/s)	Elev (m)	Elev (m)	(m/s)	(m/s)	(m/s)
Main	2652	100	6.47	89.08	89.46		2.76	0.05
Main	2545	2	0.1	88.24	88.24	0.06	0.11	0.04
Main	2545	5	0.84	88.45	88.46	0.25	0.45	0.17
Main	2545	10	1.74	88.57	88.58	0.4	0.71	0.19
Main	2545	25	3.39	88.68	88.71	0.54	0.96	0.27
Main	2545	50	4.83	88.76	88.79	0.61	1.1	0.31
Main	2545	100	6.47	88.83	88.86	0.64	1.19	0.37
Main	2321	2	0.1	88.21	88.21	0.07	0.11	
Main	2321	5	0.84	88.34	88.34	0.13	0.23	0.06
Main	2321	10	1.74	88.41	88.41	0.17	0.3	0.1
Main	2321	25	3.39	88.49	88.5	0.22	0.38	0.14
Main	2321	50	4.83	88.54	88.54	0.27	0.45	0.17
Main	2321	100	6.47	88.59	88.59	0.31	0.52	0.19
Main	2182	2	0.1	88	88.02	0.15	0.59	
Main	2182	5	0.84	88.1	88.13	0.35	0.92	0.26
Main	2182	10	1.74	88.15	88.19	0.46	1.07	0.34
Main	2182	25	3.39	88.19	88.24	0.59	1.32	0.48
Main	2182	50	4.83	88.25	88.29	0.55	1.19	0.48
Main	2182	100	6.47	88.31	88.34	0.57	1.15	0.51
Main	2076	2	0.1	87.3	87.3	0.02	0.22	
Main	2076	5	0.84	87.58	87.59	0.19	0.41	
Main	2076	10	1.74	87.72	87.73	0.24	0.57	0.1
Main	2076	25	3.39	87.85	87.88	0.21	0.8	0.21
Main	2076	50	4.83	87.9	87.94	0.29	0.97	0.27
Main	2076	100	6.47	87.98	88.02	0.35	1.06	0.29
Main	1940	2	0.1	87.07	87.08	0.19	0.42	0.04
Main	1940	5	0.84	87.22	87.3	0.63	1.41	0.48
Main	1940	10	1.74	87.34	87.43	0.47	1.63	0.61
Main	1940	25	3.39	87.45	87.52	0.53	1.65	0.49
Main	1940	50	4.83	87.47	87.52	0.55	1.67	0.49
Main	1940	100	6.47	87.49	87.56	0.67	1.93	0.61
				_		-	'	
Main	1805	2	0.1	86.04	86.07	0.67	0.66	
Main	1805	5	0.84	86.27	86.28	0.47	0.72	0.13
Main	1805	10	1.74	86.36	86.39	0.53	0.98	0.27

	River		Q Total	W.S.	E.G.	Vel Left	Vel Chnl	Vel Right
Reach	Sta	Profile	(m3/s)	Elev (m)	Elev (m)	(m/s)	(m/s)	(m/s)
Main	1805	25	3.39	86.46	86.5	0.68	1.2	0.26
Main	1805	50	4.83	86.52	86.57	0.75	1.34	0.33
Main	1805	100	6.47	86.61	86.65	0.72	1.32	0.42
Main	1738	2	0.1	85.57	85.57	0.12	0.23	
Main	1738	5	0.84	85.62	85.69	0.63	1.18	0.22
Main	1738	10	1.74	85.71	85.81	0.77	1.47	0.44
Main	1738	25	3.39	85.83	85.96	0.87	1.74	0.56
Main	1738	50	4.83	85.92	86.06	0.92	1.86	0.61
Main	1738	100	6.47	85.95	86.15	1.11	2.24	0.76
Main	1528	2	0.1	84.79	84.81	0.32	0.63	0.24
Main	1528	5	0.84	85.1	85.1	0.15	0.34	0.15
Main	1528	10	1.74	85.3	85.31	0.17	0.32	0.14
Main	1528	25	3.39	85.26	85.27	0.36	0.7	0.34
Main	1528	50	4.83	85.36	85.37	0.43	0.8	0.3
Main	1528	100	6.47	85.5	85.51	0.38	0.69	0.3
Main	1411	2	0.1	84.78	84.78	0.01	0.01	0
Main	1411	5	0.84	85.1	85.1	0.02	0.06	0.02
Main	1411	10	1.74	85.31	85.31	0.03	0.08	0.03
Main	1411	25	3.39	85.26	85.26	0.06	0.17	0.06
Main	1411	50	4.83	85.36	85.36	0.08	0.21	0.08
Main	1411	100	6.47	85.5	85.5	0.09	0.22	0.09
N 4 - ¹ -	1212		0.1	04.70	04.70		0.00	0.01
Main	1313	2	0.1	84.78	84.78	0	0.02	0.01
Main	1313	5	0.84	85.1	85.1	0.03	0.11	0.06
Main	1313	10	1.74	85.3	85.3	0.06	0.18	0.1
Main	1313	25	3.39	85.25	85.26	0.13	0.37	0.2
Main	1313	50	4.83	85.34	85.35	0.17	0.49	0.27
Main	1313	100	6.47	85.5	85.5	0.11	0.23	0.13
Main	1303		Culvert					
					04-5			
Main	1296	2	1.16	84.68	84.78		1.41	
Main	1296	5	2.91	84.87	85.09		2.11	
Main	1296	10	4.28	85	85.3	-	2.41	
Main	1296	25	6.24	85.16	85.17	0.27	0.6	
Main	1296	50	7.7	85.16	85.17	0.34	0.74	
Main	1296	100	9.21	85.16	85.18	0.4	0.89	

	River		Q Total	W.S.	E.G.	Vel Left	Vel Chnl	Vel Right
Reach	Sta	Profile	(m3/s)	Elev (m)	Elev (m)	(m/s)	(m/s)	(m/s)
Main	1206	2	1.16	83.92	83.97	0.31	1.06	0.41
Main	1206	5	2.91	84.09	84.16	0.49	1.39	0.46
Main	1206	10	4.28	84.17	84.25	0.6	1.51	0.47
Main	1206	25	6.24	84	84.76	1.3	4.26	1.44
Main	1206	50	7.7	84.06	84.72	1.36	4.14	1.41
Main	1206	100	9.21	84.4	84.47	0.74	1.59	0.63
Main	1122	2	1.16	83.41	83.46	0.34	1.08	0.46
Main	1122	5	2.91	83.54	83.61	0.56	1.49	0.75
Main	1122	10	4.28	83.61	83.71	0.64	1.71	0.88
Main	1122	25	6.24	83.71	83.83	0.74	1.96	0.96
Main	1122	50	7.7	83.72	83.89	0.9	2.35	1.16
Main	1122	100	9.21	83.77	83.96	0.96	2.48	1.22
Main	994	2	1.16	81.96	82.06	0.17	1.37	0.37
Main	994	5	2.91	82.13	82.29	0.53	1.8	0.62
Main	994	10	4.28	82.23	82.43	0.63	2.01	0.73
Main	994	25	6.24	82.35	82.59	0.65	2.25	0.77
Main	994	50	7.7	82.41	82.51	0.65	1.7	0.4
Main	994	100	9.21	82.47	82.57	0.66	1.77	0.31
Main	924	2	1.16	81.88	81.89	0.21	0.53	0.17
Main	924	5	2.91	82.09	82.11	0.21	0.73	0.24
Main	924	10	4.28	82.17	82.19	0.28	0.86	0.29
Main	924	25	6.24	82.24	82.27	0.37	1.04	0.29
Main	924	50	7.7	82.28	82.32	0.43	1.16	0.33
Main	924	100	9.21	82.32	82.36	0.45	1.27	0.36
Main	875	2	1.16	81.76	81.82	0.22	1.08	0.25
Main	875	5	2.91	81.9	82.01	0.4	1.59	0.38
Main	875	10	4.28	81.98	82.08	0.44	1.65	0.46
Main	875	25	6.24	82.06	82.15	0.48	1.72	0.58
Main	875	50	7.7	82.11	82.19	0.54	1.67	0.62
Main	875	100	9.21	82.15	82.23	0.59	1.72	0.67
Main	830	2	1.16	81.33	81.4	0.34	1.18	0.26
Main	830	5	2.91	81.45	81.57	0.55	1.54	0.56
Main	830	10	4.28	81.51	81.66	0.71	1.8	0.7
Main	830	25	6.24	81.61	81.77	0.83	1.95	0.8

	River		Q Total	W.S.	E.G.	Vel Left	Vel Chnl	Vel Right
Reach	Sta	Profile	(m3/s)	Elev (m)	Elev (m)	(m/s)	(m/s)	(m/s)
					1			
Main	830	50	7.7	81.65	81.85	0.88	2.11	0.9
Main	830	100	9.21	81.73	81.92	0.8	2.11	0.93
Main	793	2	1.16	80.35	80.46	0.52	1.55	0.57
Main	793	5	2.91	80.59	80.7	0.61	1.73	0.54
Main	793	10	4.28	80.54	80.93	1.08	3.08	0.83
Main	793	25	6.24	80.6	81.07	1.24	3.54	1.13
Main	793	50	7.7	80.65	81.14	1.32	3.72	1.25
Main	793	100	9.21	80.67	81.25	1.45	4.1	1.42
Main	756	2	1.16	77.99	78.32		2.54	
Main	756	5	2.91	77.55	78.32		4.82	
Main	756	10	4.28	78.1	78.35	0.54	2.2	0.42
Main	756	25	6.24	78.14	78.42	0.72	2.35	0.42
Main	756	50	7.7	78.14	78.49	0.72	2.55	0.78
Main	756	100	9.21	78.10	78.52	0.03	2.55	0.76
Wall	750	100	5.21	70.15	70.52	0.5	2.55	0.00
Main	700	2	1.16	77.46	77.5	0.18	0.89	0.31
Main	700	5	2.91	77.59	77.67	0.28	1.3	0.34
Main	700	10	4.28	77.68	77.74	0.35	1.32	0.38
Main	700	25	6.24	77.71	77.8	0.49	1.62	0.53
Main	700	50	7.7	77.74	77.84	0.57	1.76	0.61
Main	700	100	9.21	77.77	77.88	0.65	1.9	0.69
Main	604	2	1.16	76.67	76.74	0.45	1.33	0.63
Main	604	5	2.91	76.8	76.89	0.56	1.64	0.76
Main	604	10	4.28	76.84	76.98	0.57	2.04	0.87
Main	604	25	6.24	76.88	76.93	0.56	1.55	0.69
Main	604	50	7.7	76.89	76.96	0.67	1.8	0.8
Main	604	100	9.21	76.91	76.99	0.74	1.89	0.85
Main	503	2	1.16	75.28	75.33	0.55	1.07	0.41
Main	503	5	2.91	75.4	75.51	0.86	1.6	0.63
Main	503	10	4.28	75.47	75.62	1.03	1.92	0.77
Main	503	25	6.24	75.52	75.76	1.28	2.49	1
Main	503	50	7.7	75.63	75.83	1.21	2.34	0.86
Main	503	100	9.21	75.7	75.9	1.21	2.39	0.8
Main	430	2	1.16	74.95	74.96	0.19	0.52	0.23
Main	430	5	2.91	75.06	75.09	0.32	0.75	0.33

	River		Q Total	W.S.	E.G.	Vel Left	Vel Chnl	Vel Right
Reach	Sta	Profile	(m3/s)	Elev (m)	Elev (m)	(m/s)	(m/s)	(m/s)
	T	Γ	Γ	Γ	Γ		Γ	Γ
Main	430	10	4.28	75.12	75.16	0.38	0.88	0.35
Main	430	25	6.24	75.21	75.26	0.43	1.01	0.39
Main	430	50	7.7	75.26	75.32	0.48	1.1	0.39
Main	430	100	9.21	75.31	75.37	0.49	1.18	0.44
Main	399	2	1.16	74.69	74.75	0.53	1.18	0.71
Main	399	5	2.91	74.79	74.88	0.77	1.56	0.9
Main	399	10	4.28	74.84	74.95	0.84	1.72	1
Main	399	25	6.24	74.91	75.05	0.95	1.97	1.19
Main	399	50	7.7	74.95	75.11	0.97	2.07	1.27
Main	399	100	9.21	74.99	75.17	1.04	2.2	1.37
Main	310	2	1.16	72.17	72.34	0.44	1.85	0.22
Main	310	5	2.91	72.29	72.64	0.61	2.67	0.69
Main	310	10	4.28	72.35	72.79	0.82	3.11	0.89
Main	310	25	6.24	72.43	72.92	1.11	3.42	1.1
Main	310	50	7.7	72.46	73.02	1.23	3.72	1.28
Main	310	100	9.21	72.5	73.09	1.33	3.9	1.3
Main	250	2	1.16	71.93	71.93	0.13	0.36	0.09
Main	250	5	2.91	72.14	72.16	0.18	0.52	0.17
Main	250	10	4.28	72.23	72.24	0.2	0.65	0.22
Main	250	25	6.24	72.31	72.34	0.27	0.78	0.27
Main	250	50	7.7	72.36	72.39	0.32	0.88	0.31
Main	250	100	9.21	72.4	72.44	0.36	0.96	0.33
Main	170	2	1.16	71.82	71.85	0.34	0.8	0.26
Main	170	5	2.91	72	72.06	0.2	1.14	0.43
Main	170	10	4.28	72.08	72.14	0.3	1.23	0.49
Main	170	25	6.24	72.17	72.22	0.33	1.24	0.47
Main	170	50	7.7	72.21	72.26	0.38	1.31	0.47
Main	170	100	9.21	72.27	72.31	0.4	1.29	0.38
Main	94	2	1.16	71.36	71.42	0.48	1.14	0.35
Main	94	5	2.91	71.47	71.59	0.74	1.62	0.59
Main	94	10	4.28	71.55	71.69	0.81	1.8	0.72
Main	94	25	6.24	71.62	71.81	0.93	2.14	0.85
Main	94	50	7.7	71.71	71.88	0.84	2.06	0.73
Main	94	100	9.21	71.75	71.95	0.89	2.24	0.76

	River		Q Total	W.S.	E.G.	Vel Left	Vel Chnl	Vel Right
Reach	Sta	Profile	(m3/s)	Elev (m)	Elev (m)	(m/s)	(m/s)	(m/s)
Main	4	2	1.16	69.61	69.65	0.54	0.94	0.78
Main	4	5	2.91	69.68	69.75	0.68	1.29	0.97
Main	4	10	4.28	69.69	69.82	0.93	1.76	1.31
Main	4	25	6.24	69.74	69.89	0.95	1.95	1.4
Main	4	50	7.7	69.73	70	1.26	2.57	1.87
Main	4	100	9.21	69.76	70.04	1.31	2.65	1.89
Trib 2	3418	2	0	94.43	94.44		0.24	
Trib 2	3418	5	0.4	94.6	94.66	0.39	1.14	
Trib 2	3418	10	0.93	94.7	94.8	0.59	1.44	0.21
Trib 2	3418	25	1.96	94.83	94.99	0.76	1.81	0.49
Trib 2	3418	50	2.89	94.93	95.12	0.85	2.02	0.61
Trib 2	3418	100	3.98	95.02	95.26	0.93	2.28	0.72
Trib 2	3403	2	0	93.14	93.32		1.89	
Trib 2	3403	5	0.4	93.31	93.84		3.21	
Trib 2	3403	10	0.93	93.43	94.09		3.61	
Trib 2	3403	25	1.96	93.62	94.39		3.9	
Trib 2	3403	50	2.89	94.38	94.51		1.59	
Trib 2	3403	100	3.98	94.63	94.79		1.74	
Trib 2	3393		Culvert					
Trib 2	3371	2	0	92.98	92.98		0.01	
Trib 2	3371	5	0.4	93.17	93.18		0.42	
Trib 2	3371	10	0.93	93.28	93.3		0.69	
Trib 2	3371	25	1.96	93.4	93.45		0.97	
Trib 2	3371	50	2.89	93.49	93.55		1.15	
Trib 2	3371	100	3.98	93.56	93.65		1.34	
Trib 2	3343	2	0	92.98	92.98	0	0.01	
Trib 2	3343	5	0.4	93.16	93.16	0.09	0.2	0.06
Trib 2	3343	10	0.93	93.26	93.27	0.15	0.33	0.11
Trib 2	3343	25	1.96	93.38	93.39	0.24	0.51	0.18
Trib 2	3343	50	2.89	93.46	93.48	0.3	0.63	0.23
Trib 2	3343	100	3.98	93.53	93.56	0.35	0.76	0.28
Trib 2	3239	2	0	92.97	92.98	0.45		
Trib 2	3239	5	0.4	93.06	93.07	0.54	0.61	0.28
Trib 2	3239	10	0.93	93.08	93.12	0.73	0.8	0.47

	River		Q Total	W.S.	E.G.	Vel Left	Vel Chnl	Vel Right
Reach	Sta	Profile	(m3/s)	Elev (m)	Elev (m)	(m/s)	(m/s)	(m/s)
Trib 2	3239	25	1.96	93.13	93.17	0.84	0.97	0.59
Trib 2	3239	50	2.89	93.15	93.21	0.92	1.13	0.66
Trib 2	3239	100	3.98	93.18	93.25	0.96	1.24	0.71
Trib 2	3124	2	0	91.7	91.7	0.08		
Trib 2	3124	5	0.4	91.81	91.81	0.25	0.23	
Trib 2	3124	10	0.93	91.84	91.85	0.34	0.36	
Trib 2	3124	25	1.96	91.89	91.9	0.43	0.51	
Trib 2	3124	50	2.89	91.92	91.93	0.49	0.6	
Trib 2	3124	100	3.98	91.95	91.97	0.56	0.7	
Trib 2	3027	2	0	90.8	90.81	0.4	0.1	
Trib 2	3027	5	0.4	90.87	90.89	0.62	0.52	
Trib 2	3027	10	0.93	90.9	90.92	0.59	0.67	
Trib 2	3027	25	1.96	90.93	90.97	0.68	0.91	
Trib 2	3027	50	2.89	90.95	91	0.73	1.04	
Trib 2	3027	100	3.98	90.97	91.04	0.76	1.15	
Trib 2	2854	2	0	89.13	89.13		0.06	
Trib 2	2854	5	0.4	89.3	89.3	0.13	0.29	0.09
Trib 2	2854	10	0.93	89.37	89.38	0.18	0.4	0.15
Trib 2	2854	25	1.96	89.46	89.47	0.19	0.52	0.22
Trib 2	2854	50	2.89	89.5	89.51	0.25	0.61	0.25
Trib 2	2854	100	3.98	89.54	89.56	0.31	0.68	0.3
Trib 2	2622	2	0	88.47	88.47		0.18	
Trib 2	2622	5	0.4	88.56	88.6		0.83	0.16
Trib 2	2622	10	0.93	88.62	88.66	0.15	0.89	0.31
Trib 2	2622	25	1.96	88.67	88.72	0.39	1.09	0.45
Trib 2	2622	50	2.89	88.72	88.77	0.47	1.06	0.5
Trib 2	2622	100	3.98	88.77	88.82	0.53	1.12	0.54
Trib 2	2421	2	0	87.28	87.28	0.02	0.09	
Trib 2	2421	5	0.4	87.54	87.55	0.22	0.5	0.21
Trib 2	2421	10	0.93	87.68	87.7	0.3	0.69	0.31
Trib 2	2421	25	1.96	87.86	87.89	0.4	0.92	0.42
Trib 2	2421	50	2.89	87.98	88.02	0.28	1.09	0.49
Trib 2	2421	100	3.98	88.06	88.1	0.32	1.18	0.52
Trib 2	2248	2	0	86.81	86.82		0.19	

	River		Q Total	W.S.	E.G.	Vel Left	Vel Chnl	Vel Right
Reach	Sta	Profile	(m3/s)	Elev (m)	Elev (m)	(m/s)	(m/s)	(m/s)
Trib 2	2248	5	0.4	86.97	87	0.27	0.79	
Trib 2	2248	10	0.93	87.03	87.09	0.46	1.11	0.27
Trib 2	2248	25	1.96	87.11	87.21	0.64	1.46	0.48
Trib 2	2248	50	2.89	87.17	87.29	0.79	1.67	0.59
Trib 2	2248	100	3.98	87.23	87.38	0.92	1.84	0.69
Trib 2	2122	2	0	84.75	84.76		0.33	
Trib 2	2122	5	0.4	84.91	84.97		1.09	
Trib 2	2122	10	0.93	85	85.1	0.25	1.35	
Trib 2	2122	25	1.96	85.12	85.26	0.54	1.69	
Trib 2	2122	50	2.89	85.2	85.38	0.69	1.91	
Trib 2	2122	100	3.98	85.26	85.49	0.8	2.16	0.28
Trib 2	2052	2	0	83.09	83.09		0.07	
Trib 2	2052	5	0.4	83.27	83.28	0.07	0.34	0.17
Trib 2	2052	10	0.93	83.36	83.37	0.15	0.47	0.25
Trib 2	2052	25	1.96	83.49	83.5	0.17	0.62	0.32
Trib 2	2052	50	2.89	83.57	83.59	0.22	0.71	0.34
Trib 2	2052	100	3.98	83.65	83.67	0.28	0.78	0.37
Trib 2	1952	2	0	82.78	82.78		0.25	
Trib 2	1952	5	0.4	82.9	82.94	0.23	0.94	
Trib 2	1952	10	0.93	82.97	83.04	0.41	1.2	0.27
Trib 2	1952	25	1.96	83.06	83.17	0.58	1.51	0.49
Trib 2	1952	50	2.89	83.13	83.27	0.69	1.69	0.6
Trib 2	1952	100	3.98	83.2	83.36	0.78	1.84	0.69
Trib 2	1860	2	0	81.99	81.99	0.03	0.08	
Trib 2	1860	5	0.4	82.07	82.07	0.22	0.35	
Trib 2	1860	10	0.93	82.11	82.12	0.3	0.48	0.04
Trib 2	1860	25	1.96	82.17	82.19	0.38	0.64	0.18
Trib 2	1860	50	2.89	82.27	82.28	0.29	0.53	0.21
Trib 2	1860	100	3.98	82.32	82.33	0.3	0.6	0.25
Trib 2	1626	2	0	80.76	80.76		0.17	
Trib 2	1626	5	0.4	80.93	80.95		0.56	0.25
Trib 2	1626	10	0.93	81.02	81.05	0.04	0.73	0.32
Trib 2	1626	25	1.96	81.15	81.18	0.2	0.91	0.39
Trib 2	1626	50	2.89	81.1	81.22	0.33	1.62	0.69
Trib 2	1626	100	3.98	81.16	81.3	0.42	1.79	0.77

	River		Q Total	W.S.	E.G.	Vel Left	Vel Chnl	Vel Right
Reach	Sta	Profile	(m3/s)	Elev (m)	Elev (m)	(m/s)	(m/s)	(m/s)
Trib 2	1449	2	0	79.91	79.91		0.13	
Trib 2	1449	5	0.4	80.13	80.15		0.63	0.17
Trib 2	1449	10	0.93	80.23	80.27		0.87	0.3
Trib 2	1449	25	1.96	80.37	80.43		1.11	0.49
Trib 2	1449	50	2.89	80.46	80.53		1.26	0.63
Trib 2	1449	100	3.98	80.55	80.64		1.38	0.73
Trib 2	1363	2	0	79.18	79.19		0.29	
Trib 2	1363	5	0.4	79.35	79.41		1.12	
Trib 2	1363	10	0.93	79.44	79.54	0.19	1.4	0.22
Trib 2	1363	25	1.96	79.58	79.72	0.5	1.7	0.44
Trib 2	1363	50	2.89	79.68	79.84	0.64	1.86	0.52
Trib 2	1363	100	3.98	79.77	79.96	0.74	2.03	0.68
Trib 2	1129	2	0	78.67	78.67		0	
Trib 2	1129	5	0.4	78.87	78.87	0.05	0.2	0.03
Trib 2	1129	10	0.93	78.99	78.99	0.1	0.33	0.09
Trib 2	1129	25	1.96	79.13	79.15	0.17	0.51	0.16
Trib 2	1129	50	2.89	79.21	79.23	0.23	0.65	0.18
Trib 2	1129	100	3.98	79.29	79.32	0.27	0.78	0.2
Trib 2	1021	2	0	78.67	78.67		0.13	
Trib 2	1021	5	0.4	78.82	78.83	0.13	0.41	0.26
Trib 2	1021	10	0.93	78.91	78.92	0.21	0.56	0.33
Trib 2	1021	25	1.96	79.03	79.04	0.22	0.74	0.37
Trib 2	1021	50	2.89	79.09	79.11	0.26	0.82	0.43
Trib 2	1021	100	3.98	79.15	79.17	0.26	0.91	0.47
Trib 2	935	2	0	78.19	78.19		0.23	
Trib 2	935	5	0.4	78.34	78.4		1.06	0.44
Trib 2	935	10	0.93	78.43	78.52	0.29	1.35	0.63
Trib 2	935	25	1.96	78.56	78.67	0.52	1.62	0.78
Trib 2	935	50	2.89	78.65	78.76	0.54	1.69	0.72
Trib 2	935	100	3.98	78.73	78.83	0.48	1.74	0.74
Trib 2	830	2	0	76.14	76.14		0.33	
Trib 2	830	5	0.4	76.34	76.36	0.18	0.6	0.3
Trib 2	830	10	0.93	76.43	76.44	0.23	0.64	0.29
Trib 2	830	25	1.96	76.56	76.56	0.24	0.59	0.18

	River		Q Total	W.S.	E.G.	Vel Left	Vel Chnl	Vel Right
Reach	Sta	Profile	(m3/s)	Elev (m)	Elev (m)	(m/s)	(m/s)	(m/s)
Trib 2	830	50	2.89	76.66	76.66	0.21	0.52	0.16
Trib 2	830	100	3.98	76.84	76.85	0.15	0.32	0.13
Trib 2	770	2	0	75.73	75.73		0.06	
Trib 2	770	5	0.4	75.88	75.96		1.23	
Trib 2	770	10	0.93	76	76.12		1.53	
Trib 2	770	25	1.96	76.16	76.34		1.91	0.48
Trib 2	770	50	2.89	76.41	76.54	0.2	1.64	0.57
Trib 2	770	100	3.98	76.77	76.81	0.23	1.09	0.53
Trib 2	760		Culvert					
Trib 2	751	2	0	75.72	75.73		0.34	
Trib 2	751	5	0.4	75.87	75.93	0.64	1.11	0.38
Trib 2	751	10	0.93	75.96	76.06	0.91	1.44	0.55
Trib 2	751	25	1.96	76.09	76.24	1.2	1.8	0.87
Trib 2	751	50	2.89	76.18	76.38	1.39	2.06	1.1
Trib 2	751	100	3.98	76.27	76.52	1.57	2.3	1.3
Trib 2	688	2	0	73.31	73.31		0.27	
Trib 2	688	5	0.4	73.4	73.53		1.6	
Trib 2	688	10	0.93	73.44	73.72		2.37	
Trib 2	688	25	1.96	73.49	74.02		3.24	
Trib 2	688	50	2.89	73.53	74.2		3.63	
Trib 2	688	100	3.98	73.57	74.37		3.96	
Trib 2	613	2	0	70.98	70.99		0.3	
Trib 2	613	5	0.4	71.14	71.18	0.28	0.83	
Trib 2	613	10	0.93	71.24	71.29	0.42	1.03	
Trib 2	613	25	1.96	71.37	71.44	0.34	1.29	0.21
Trib 2	613	50	2.89	71.43	71.51	0.47	1.42	0.18
Trib 2	613	100	3.98	71.49	71.58	0.54	1.53	0.34
Trib 2	408	2	0	69.35	69.35		0.14	
Trib 2	408	5	0.4	69.56	69.59		0.77	0.29
Trib 2	408	10	0.93	69.67	69.73	0.25	1.11	0.44
Trib 2	408	25	1.96	69.8	69.91	0.41	1.49	0.59
Trib 2	408	50	2.89	69.9	70.03	0.52	1.69	0.7
Trib 2	408	100	3.98	69.99	70.14	0.61	1.85	0.79

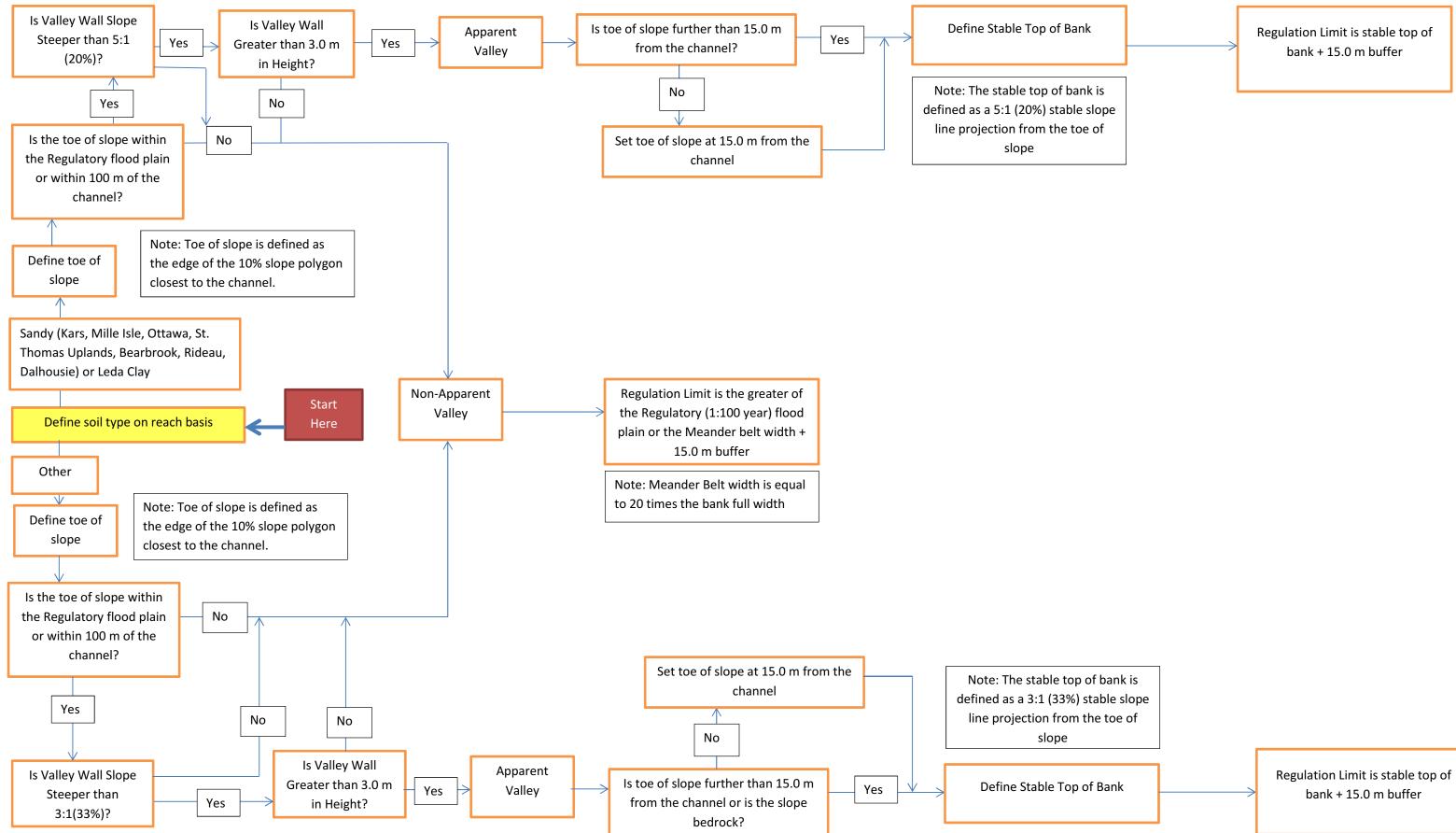
	River		Q Total	W.S.	E.G.	Vel Left	Vel Chnl	Vel Right
Reach	Sta	Profile	(m3/s)	Elev (m)	Elev (m)	(m/s)	(m/s)	(m/s)
Trib 2	271	2	0	68.91	68.91		0.13	
Trib 2	271	5	0.4	69.08	69.09	0.09	0.44	0.21
Trib 2	271	10	0.93	69.17	69.19	0.2	0.61	0.31
Trib 2	271	25	1.96	69.3	69.33	0.3	0.82	0.41
Trib 2	271	50	2.89	69.38	69.42	0.38	0.98	0.48
Trib 2	271	100	3.98	69.46	69.51	0.44	1.13	0.5
Trib 2	126	2	0	68.21	68.21		0.2	
Trib 2	126	5	0.4	68.36	68.38	0.21	0.67	0.05
Trib 2	126	10	0.93	68.4	68.45	0.39	0.94	0.22
Trib 2	126	25	1.96	68.46	68.54	0.56	1.26	0.41
Trib 2	126	50	2.89	68.51	68.61	0.65	1.41	0.48
Trib 2	126	100	3.98	68.56	68.68	0.74	1.57	0.56
Trib 2	6	2	0	65.67	65.68		0.33	
Trib 2	6	5	0.4	65.76	65.79		0.84	
Trib 2	6	10	0.93	65.81	65.87		1.1	0.31
Trib 2	6	25	1.96	65.89	65.99		1.43	0.59
Trib 2	6	50	2.89	66.11	66.16	0.21	0.94	0.43
Trib 2	6	100	3.98	67.93	67.93	0.04	0.08	0.03
Main-DS-2	784	2	1.28	68.54	69.55		4.45	
Main-DS-2	784	5	4.11	68.67	69.66	0.28	4.4	
Main-DS-2	784	10	6.63	68.77	69.73	1.01	4.37	0.92
Main-DS-2	784	25	10.43	69.35	69.37	0.32	0.86	0.36
Main-DS-2	784	50	13.44	69.64	69.65	0.24	0.63	0.29
Main-DS-2	784	100	16.63	68.96	69.97	1.57	5.01	1.3
Main-DS-2	719	2	1.28	68.05	68.16		1.55	0.88
Main-DS-2	719	5	4.11	68.3	68.51	0.41	2.19	1.18
Main-DS-2	719	10	6.63	68.45	68.72	0.65	2.57	1.13
Main-DS-2	719	25	10.43	68.45	69.12	1.03	4.05	1.78
Main-DS-2	719	50	13.44	68.49	69.47	1.31	4.94	1.72
Main-DS-2	719	100	16.63	68.58	68.79	0.78	2.81	1.25
Main-DS-2	643	2	1.28	65.99	66.02	0.35	0.81	0.4
Main-DS-2	643	5	4.11	66.34	66.4	0.49	1.17	0.54
Main-DS-2	643	10	6.63	66.55	66.62	0.56	1.36	0.6
Main-DS-2	643	25	10.43	66.8	66.89	0.63	1.55	0.65
Main-DS-2	643	50	13.44	66.91	67.02	0.73	1.74	0.72

	River		Q Total	W.S.	E.G.	Vel Left	Vel Chnl	Vel Right
Reach	Sta	Profile	(m3/s)	Elev (m)	Elev (m)	(m/s)	(m/s)	(m/s)
Main-DS-2	643	100	16.63	67.97	67.99	0.42	0.86	0.35
Main-DS-2	164	2	1.28	64.88	64.91	0.13	0.86	0.41
Main-DS-2	164	5	4.11	65.27	65.33	0.38	1.35	0.63
Main-DS-2	164	10	6.63	65.48	65.57	0.49	1.6	0.78
Main-DS-2	164	25	10.43	65.73	65.85	0.6	1.88	0.95
Main-DS-2	164	50	13.44	66.16	66.25	0.55	1.62	0.84
Main-DS-2	164	100	16.63	67.93	67.93	0.2	0.56	0.19
Main-DS-2	3	2	1.28	64.09	64.21		1.57	0.64
Main-DS-2	3	5	4.11	64.36	64.56		2.13	1.08
Main-DS-2	3	10	6.63	64.52	64.78	0.16	2.43	1.26
Main-DS-2	3	25	10.43	64.71	65.04	0.54	2.8	1.37
Main-DS-2	3	50	13.44	66.13	66.15	0.29	0.83	0.32
Main-DS-2	3	100	16.63	67.93	67.93	0.07	0.27	0.13
Main-DS-1	1849	2	1.49	64.07	64.09	0.36	0.71	0.21
Main-DS-1	1849	5	4.88	64.36	64.39	0.36	1.01	0.35
Main-DS-1	1849	10	7.94	64.45	64.5	0.5	1.29	0.44
Main-DS-1	1849	25	12.56	64.92	64.94	0.39	0.84	0.32
Main-DS-1	1849	50	16.16	66.14	66.14	0.2	0.37	0.11
Main-DS-1	1849	100	20.1	67.93	67.93	0.1	0.18	0.07
Main-DS-1	1597	2	1.49	63.08	63.18		1.42	0.44
Main-DS-1	1597	5	4.88	63.33	63.53	0.54	2.03	0.77
Main-DS-1	1597	10	7.94	63.74	63.86	0.48	1.58	0.64
Main-DS-1	1597	25	12.56	64.85	64.87	0.29	0.7	0.29
Main-DS-1	1597	50	16.16	66.13	66.13	0.11	0.4	0.16
Main-DS-1	1597	100	20.1	67.93	67.93	0.07	0.19	0.07
Main-DS-1	1317	2	1.49	62.72	62.72	0.11	0.34	0.17
Main-DS-1	1317	5	4.88	63.27	63.27	0.14	0.43	0.22
Main-DS-1	1317	10	7.94	63.73	63.73	0.12	0.43	0.23
Main-DS-1	1317	25	12.56	64.84	64.85	0.11	0.3	0.16
Main-DS-1	1317	50	16.16	66.13	66.13	0.08	0.18	0.08
Main-DS-1	1317	100	20.1	67.93	67.93	0.03	0.11	0.04
Main-DS-1	978	2	1.49	62.61	62.62	0.14	0.38	0.18
Main-DS-1	978	5	4.88	63.2	63.21	0.22	0.53	0.27
Main-DS-1	978	10	7.94	63.68	63.69	0.22	0.57	0.3

	River		Q Total	W.S.	E.G.	Vel Left	Vel Chnl	Vel Right
Reach	Sta	Profile	(m3/s)	Elev (m)	Elev (m)	(m/s)	(m/s)	(m/s)
Main-DS-1	978	25	12.56	64.83	64.84	0.09	0.38	0.18
Main-DS-1	978	50	16.16	66.13	66.13	0.07	0.17	0.06
Main-DS-1	978	100	20.1	67.93	67.93	0.03	0.08	0.02
Main-DS-1	704	2	1.49	62.47	62.48		0.55	0.34
Main-DS-1	704	5	4.88	63.07	63.1		0.82	0.53
Main-DS-1	704	10	7.94	63.57	63.61		0.92	0.6
Main-DS-1	704	25	12.56	64.77	64.81		0.83	0.54
Main-DS-1	704	50	16.16	66.09	66.12		0.72	0.48
Main-DS-1	704	100	20.1	67.9	67.92		0.63	0.12
	600							
Main-DS-1	698		Culvert					
Main-DS-1	694	2	1.49	61.99	62	0.38	0.6	0.26
Main-DS-1	694	5	4.88	62.12	62.23	0.98	1.51	0.74
Main-DS-1	694	10	7.94	62.23	62.44	1.35	2.03	1.05
Main-DS-1	694	25	12.56	62.5	62.76	1.56	2.31	1.27
Main-DS-1	694	50	16.16	62.81	63.06	1.54	2.24	1.29
Main-DS-1	694	100	20.1	63.35	63.54	1.35	1.94	1.15
Main-DS-1	677	2	1.49	61.23	61.25	0.7	0.75	0.26
Main-DS-1	677	5	4.88	61.66	61.67	0.38	0.6	0.27
Main-DS-1	677	10	7.94	61.97	61.98	0.35	0.61	0.28
Main-DS-1	677	25	12.56	62.4	62.41	0.32	0.62	0.28
Main-DS-1	677	50	16.16	62.79	62.8	0.28	0.57	0.26
Main-DS-1	677	100	20.1	63.38	63.39	0.25	0.47	0.2
Main-DS-1	383	2	1.49	61.12	61.13	0.16	0.4	0.19
Main-DS-1	383	5	4.88	61.57	61.59	0.3	0.72	0.33
Main-DS-1	383	10	7.94	61.89	61.91	0.37	0.84	0.39
Main-DS-1	383	25	12.56	62.34	62.36	0.26	0.86	0.39
Main-DS-1	383	50	16.16	62.75	62.77	0.25	0.74	0.33
Main-DS-1	383	100	20.1	63.37	63.37	0.23	0.55	0.11
Main-DS-1	225	2	1.49	61.06	61.07	0.22	0.5	0.15
Main-DS-1	225	5	4.88	61.46	61.49	0.34	0.87	0.32
Main-DS-1	225	10	7.94	61.79	61.83	0.28	0.97	0.39
Main-DS-1	225	25	12.56	62.27	62.3	0.33	0.91	0.38
Main-DS-1	225	50	16.16	62.71	62.73	0.33	0.8	0.16
Main-DS-1	225	100	20.1	63.36	63.36	0.09	0.33	0.09

	River		Q Total	W.S.	E.G.	Vel Left	Vel Chnl	Vel Right
Reach	Sta	Profile	(m3/s)	Elev (m)	Elev (m)	(m/s)	(m/s)	(m/s)
Main-DS-1	2	2	1.49	61.06	61.06	0.01	0.04	0.02
Main-DS-1	2	5	4.88	61.48	61.48	0.02	0.04	0.02
Main-DS-1	2	10	7.94	61.82	61.82	0.02	0.03	0.02
Main-DS-1	2	25	12.56	62.29	62.29	0.02	0.03	0.02
Main-DS-1	2	50	16.16	62.73	62.73	0.02	0.03	0.02
Main-DS-1	2	100	20.1	63.36	63.36	0.02	0.03	0.01
Trib 1	3577	2	0.2	64.82	64.82	0.2	0.29	0.21
Trib 1	3577	5	1.26	65	65.01	0.32	0.55	0.3
Trib 1	3577	10	2.42	65.14	65.15	0.34	0.62	0.35
Trib 1	3577	25	4.4	65.34	65.36	0.31	0.68	0.4
Trib 1	3577	50	6.08	65.5	65.51	0.33	0.7	0.42
Trib 1	3577	100	7.96	66.41	66.41	0.17	0.34	0.18
Trib 1	3367	2	0.2	64	64.03		0.74	
Trib 1	3367	5	1.26	64.35	64.42	0.24	1.18	0.33
Trib 1	3367	10	2.42	64.55	64.66	0.43	1.52	0.44
Trib 1	3367	25	4.4	64.77	64.94	0.63	1.95	0.69
Trib 1	3367	50	6.08	64.79	65.1	0.84	2.61	0.94
Trib 1	3367	100	7.96	66.36	66.39	0.34	0.86	0.31
Trib 1	3097	2	0.2	63.51	63.52	0.15	0.29	0.16
Trib 1	3097	5	1.26	63.78	63.8	0.35	0.66	0.32
Trib 1	3097	10	2.42	63.96	63.99	0.44	0.86	0.38
Trib 1	3097	25	4.4	64.19	64.23	0.53	1.06	0.46
Trib 1	3097	50	6.08	64.66	64.68	0.39	0.8	0.36
Trib 1	3097	100	7.96	66.37	66.37	0.13	0.27	0.11
Trib 1	2762	2	0.2	63.05	63.06		0.36	0.06
Trib 1	2762	5	1.26	63.32	63.34	0.25	0.62	0.25
Trib 1	2762	10	2.42	63.51	63.53	0.39	0.76	0.34
Trib 1	2762	25	4.4	63.77	63.81	0.52	0.91	0.41
Trib 1	2762	50	6.08	64.57	64.59	0.37	0.58	0.31
Trib 1	2762	100	7.96	66.36	66.36	0.23	0.34	0.21
Trib 1	2740		Culvert					
Trib 1	2725	2	0.2	63.04	63.06		0.52	0.26
Trib 1	2725	5	1.26	63.29	63.33	0.25	0.93	0.45

	River		Q Total	W.S.	E.G.	Vel Left	Vel Chnl	Vel Right
Reach	Sta	Profile	(m3/s)	Elev (m)	Elev (m)	(m/s)	(m/s)	(m/s)
Trib 1	2725	10	2.42	63.46	63.52	0.38	1.13	0.52
Trib 1	2725	25	4.4	63.72	63.78	0.57	1.22	0.57
Trib 1	2725	50	6.08	64.55	64.57	0.4	0.66	0.38
Trib 1	2725	100	7.96	66.34	66.34	0.24	0.37	0.24
Trib 1	2546	2	0.2	62.81	62.82	0.1	0.22	0.07
Trib 1	2546	5	1.26	63.1	63.1	0.19	0.43	0.2
Trib 1	2546	10	2.42	63.31	63.32	0.22	0.51	0.24
Trib 1	2546	25	4.4	63.62	63.63	0.26	0.55	0.26
Trib 1	2546	50	6.08	64.55	64.55	0.14	0.3	0.14
Trib 1	2546	100	7.96	66.34	66.34	0.05	0.1	0.04
Trib 1	2377	2	0.63	62.68	62.68	0.02	0.3	0.17
Trib 1	2377	5	3.18	63	63.01	0.18	0.48	0.31
Trib 1	2377	10	5.88	63.21	63.22	0.25	0.61	0.39
Trib 1	2377	25	10.35	63.54	63.56	0.3	0.71	0.45
Trib 1	2377	50	14.08	64.53	64.54	0.15	0.46	0.25
Trib 1	2377	100	18.23	66.34	66.34	0.08	0.24	0.13
Trib 1	1829	2	0.63	62.03	62.05	0.23	0.57	0.2
Trib 1	1829	5	3.18	62.45	62.5	0.33	1.01	0.4
Trib 1	1829	10	5.88	62.7	62.74	0.47	1.13	0.32
Trib 1	1829	25	10.35	63.35	63.36	0.25	0.72	0.25
Trib 1	1829	50	14.08	64.52	64.52	0.13	0.27	0.12
Trib 1	1829	100	18.23	66.34	66.34	0.07	0.13	0.06
Trib 1	1496	2	0.63	61.64	61.64	0.06	0.41	0.27
Trib 1	1496	5	3.18	62.1	62.12	0.18	0.73	0.44
Trib 1	1496	10	5.88	62.43	62.45	0.23	0.8	0.41
Trib 1	1496	25	10.35	63.33	63.33	0.11	0.27	0.12
Trib 1	1496	50	14.08	64.52	64.52	0.07	0.13	0.07
Trib 1	1496	100	18.23	66.34	66.34	0.04	0.08	0.04
Trib 1	1332	2	0.63	61.51	61.51	0.17	0.35	0.14
Trib 1	1332	5	3.18	62	62.01	0.36	0.58	0.29
Trib 1	1332	10	5.88	62.35	62.37	0.46	0.7	0.4
Trib 1	1332	25	10.35	63.3	63.32	0.43	0.63	0.4
Trib 1	1332	50	14.08	64.5	64.51	0.37	0.53	0.35
Trib 1	1332	100	18.23	66.32	66.33	0.3	0.44	0.29


	River		Q Total	W.S.	E.G.	Vel Left	Vel Chnl	Vel Right
Reach	Sta	Profile	(m3/s)	Elev (m)	Elev (m)	(m/s)	(m/s)	(m/s)
	-							
Trib 1	1319		Culvert					
Trib 1	1300	2	0.63	61.49	61.5	0.24	0.47	0.09
Trib 1	1300	5	3.18	61.83	61.87	0.6	0.98	0.35
Trib 1	1300	10	5.88	62.05	62.12	0.81	1.27	0.42
Trib 1	1300	25	10.35	62.36	62.45	0.98	1.5	0.67
Trib 1	1300	50	14.08	62.73	62.81	0.95	1.44	0.74
Trib 1	1300	100	18.23	63.35	63.41	0.84	1.24	0.71
Trib 1	1142	2	0.63	61.43	61.43	0.08	0.21	0.08
Trib 1	1142	5	3.18	61.62	61.64	0.25	0.67	0.28
Trib 1	1142	10	5.88	61.83	61.86	0.17	0.88	0.35
Trib 1	1142	25	10.35	62.29	62.31	0.22	0.64	0.23
Trib 1	1142	50	14.08	62.73	62.73	0.2	0.46	0.18
Trib 1	1142	100	18.23	63.36	63.37	0.17	0.33	0.15
Trib 1	806	2	0.63	61.37	61.37	0.06	0.13	
Trib 1	806	5	3.18	61.54	61.54	0.09	0.15	0.02
Trib 1	806	10	5.88	61.83	61.83	0.05	0.09	0.03
Trib 1	806	25	10.35	62.3	62.3	0.03	0.04	0.03
Trib 1	806	50	14.08	62.73	62.73	0.03	0.04	0.03
Trib 1	806	100	18.23	63.37	63.37	0.02	0.03	0.02
Trib 1	444	2	0.63	61.1	61.12	0.63	0.05	
Trib 1	444	5	3.18	61.49	61.49	0.1	0.15	0.07
Trib 1	444	10	5.88	61.82	61.82	0.08	0.13	0.06
Trib 1	444	25	10.35	62.3	62.3	0.07	0.12	0.06
Trib 1	444	50	14.08	62.73	62.73	0.07	0.11	0.05
Trib 1	444	100	18.23	63.36	63.36	0.06	0.09	0.05
Trib 1	7	2	0.63	61.06	61.06	0.04	0.09	0.03
Trib 1	7	5	3.18	61.48	61.48	0.06	0.12	0.04
Trib 1	7	10	5.88	61.82	61.82	0.06	0.12	0.05
Trib 1	7	25	10.35	62.29	62.29	0.06	0.12	0.06
Trib 1	7	50	14.08	62.73	62.73	0.06	0.11	0.06
Trib 1	7	100	18.23	63.36	63.36	0.05	0.1	0.06
Main-DS-1-DS-0	2091	2	3.58	61.06	61.06	0.08	0.38	0.11
Main-DS-1-DS-0	2091	5	9.72	61.46	61.48	0.13	0.64	0.19
Main-DS-1-DS-0	2091	10	16.71	61.78	61.81	0.19	0.84	0.25

	River		Q Total	W.S.	E.G.	Vel Left	Vel Chnl	Vel Right
Reach	Sta	Profile	(m3/s)	Elev (m)	Elev (m)	(m/s)	(m/s)	(m/s)
Main-DS-1-DS-0	2091	25	27.85	62.24	62.29	0.26	1.04	0.32
Main-DS-1-DS-0	2091	50	36.89	62.67	62.72	0.29	1.11	0.33
Main-DS-1-DS-0	2091	100	46.81	63.36	63.36	0.08	0.28	0.07
Main-DS-1-DS-0	2076		Bridge					
Main-DS-1-DS-0	2062	2	3.58	61.01	61.03	0.09	0.6	0.09
Main-DS-1-DS-0	2062	5	9.72	61.35	61.4	0.17	1.01	0.16
Main-DS-1-DS-0	2062	10	16.71	61.59	61.67	0.27	1.33	0.22
Main-DS-1-DS-0	2062	25	27.85	61.87	62.01	0.39	1.73	0.34
Main-DS-1-DS-0	2062	50	36.89	62.05	62.23	0.48	2.01	0.43
Main-DS-1-DS-0	2062	100	46.81	62.22	62.45	0.56	2.29	0.51
Main-DS-1-DS-0	1509	2	3.58	60.83	60.83	0.08	0.3	0.05
Main-DS-1-DS-0	1509	5	9.72	61.07	61.07	0.13	0.48	0.09
Main-DS-1-DS-0	1509	10	16.71	61.24	61.25	0.18	0.62	0.13
Main-DS-1-DS-0	1509	25	27.85	61.42	61.43	0.23	0.81	0.17
Main-DS-1-DS-0	1509	50	36.89	61.54	61.55	0.26	0.92	0.2
Main-DS-1-DS-0	1509	100	46.81	61.65	61.67	0.3	1.04	0.24
Main-DS-1-DS-0	1160	2	3.94	60.51	60.57	0.45	1.51	0.23
Main-DS-1-DS-0	1160	5	10.45	60.61	60.68	0.54	1.91	0.36
Main-DS-1-DS-0	1160	10	17.76	60.68	60.77	0.63	2.27	0.45
Main-DS-1-DS-0	1160	25	29.48	60.85	60.9	0.52	1.88	0.41
Main-DS-1-DS-0	1160	50	38.98	60.95	61	0.52	1.86	0.43
Main-DS-1-DS-0	1160	100	49.38	61.04	61.09	0.53	1.9	0.46
Main-DS-1-DS-0	737	2	3.94	60.34	60.34	0.03	0.03	0.01
Main-DS-1-DS-0	737	5	10.45	60.43	60.43	0.06	0.09	0.02
Main-DS-1-DS-0	737	10	17.76	60.52	60.52	0.08	0.14	0.04
Main-DS-1-DS-0	737	25	29.48	60.64	60.64	0.1	0.21	0.06
Main-DS-1-DS-0	737	50	38.98	60.72	60.72	0.11	0.26	0.07
Main-DS-1-DS-0	737	100	49.38	60.79	60.79	0.13	0.3	0.08
Main-DS-1-DS-0	460	2	3.94	60.33	60.33	0.03	0.05	0.02
Main-DS-1-DS-0	460	5	10.45	60.39	60.39	0.07	0.12	0.04
Main-DS-1-DS-0	460	10	17.76	60.47	60.47	0.09	0.19	0.06
Main-DS-1-DS-0	460	25	29.48	60.57	60.57	0.11	0.26	0.08
Main-DS-1-DS-0	460	50	38.98	60.64	60.65	0.12	0.31	0.1
Main-DS-1-DS-0	460	100	49.38	60.71	60.72	0.14	0.35	0.11

	River		Q Total	W.S.	E.G.	Vel Left	Vel Chnl	Vel Right
Reach	Sta	Profile	(m3/s)	Elev (m)	Elev (m)	(m/s)	(m/s)	(m/s)
Main-DS-1-DS-0	164	2	3.94	60.31	60.31	0.05	0.09	0.03
Main-DS-1-DS-0	164	5	10.45	60.24	60.25	0.19	0.27	0.09
Main-DS-1-DS-0	164	10	17.76	60.27	60.27	0.29	0.43	0.15
Main-DS-1-DS-0	164	25	29.48	60.33	60.34	0.37	0.67	0.21
Main-DS-1-DS-0	164	50	38.98	60.39	60.39	0.39	0.81	0.24
Main-DS-1-DS-0	164	100	49.38	60.45	60.46	0.41	0.92	0.26
Main-DS-1-DS-0	1	2	3.94	60.2	60.23	0.2	0.99	0.18
Main-DS-1-DS-0	1	5	10.45	60.23	60.23	0.04	0.07	0.01
Main-DS-1-DS-0	1	10	17.76	60.23	60.23	0.06	0.12	0.02
Main-DS-1-DS-0	1	25	29.48	60.23	60.23	0.1	0.2	0.04
Main-DS-1-DS-0	1	50	38.98	60.23	60.23	0.13	0.26	0.05
Main-DS-1-DS-0	1	100	49.38	60.23	60.23	0.17	0.33	0.06

Appendix G

Regulation Limit Flow Chart

Appendix H

Technical Review Comments and Responses

J.F. Sabourin and Associates Inc. 52 Springbrook Drive, Ottawa, ON K2S 1B9 T 613-836-3884 F 613-836-0332

Ottawa. ON Paris. ON Gatineau. QC Montréal. QC Québec. QC

jfsa.com

June 19, 2020

Project Number: P1747(06)-20

City of Ottawa Infrastructure Services 110 Laurier Avenue West Ottawa, Ontario K1P 1J1

Attention: Amanda Lynch, P.Eng, Project Manager

Subject: Technical Review of MVCA's Casey Creek Flood Plain Mapping Study

1. INTRODUCTION

J.F. Sabourin and Associates Inc. (JFSA) were retained by the City of Ottawa to complete technical reviews for flood plain mapping work by local Conservation Authorities between 2018 and 2020. These reviews will focus on reports, maps and supporting modelling prepared by Rideau Valley Conservation Authority (RVCA), Mississippi Valley Conservation Authority (MVCA) and South Nation Conservation (SNC). It is JFSA's understanding that the City of Ottawa, in conjunction with these three Conservation Authorities, has developed a multi-year program to update flood plain mapping within the City of Ottawa and to produce new flood plain mapping where it does not currently exist.

Casey Creek is located in the northwest end of the City of Ottawa and tributary to Constance Lake. According to the draft report, the creek has a total drainage area is approximately 55 km² and the main channel extends a length of approximately 6.5 km from Marchurst Road at the upstream end to its outlet at Constance Lake. There are three main tributary branches of Casey Creek that join the watercourse immediately upstream of Dunrobin Road. There is no existing flood plain mapping for Casey Creek.

MVCA provided JFSA with the flowing information for this technical review:

- Draft flood plain mapping study report and supporting appendices
- Draft flood hazard maps
- Draft flood plain GIS files
- Hydrologic (SWMHYMO) and hydraulic (HEC-RAS) models
- Completed flood plain mapping report checklist

The comments made in this technical review report are intended to be reviewed by MVCA for their consideration to increase confidence in the calculations and mapping completed for the Casey Creek study.

2. SCOPE OF TECHNICAL REVIEW

The scope of this technical review includes the following:

- 1. Complete a preliminary review and initial screening of the submitted documents to confirm the general report structure, level of detail and methodology and supporting information including models used and directly relevant reports are consistent with requirements for a flood plain mapping project.
- 2. Confirm the approach used in the draft report is consistent with the applicable technical guidelines and local standards.
- 3. Assess the descriptions and details in the draft report related to the hydrologic modelling and/or statistical analysis and hydraulic modelling. Confirm the report appropriately documents:
 - a) The sources of information used to complete these analyses;
 - b) Methodologies, parameters, and assumptions; and
 - c) The information used is adequate in terms of accuracy, level of detail and representative of existing conditions for the purposes of flood risk mapping.
- 4. Confirm the report appropriately documents key information, both discussed and presented in summary tables and figures including:
 - a) Selection of methodology and model(s) including commands/subroutines, used;
 - b) Hydrologic analyses (models and/or statistical analyses used, input parameters, design storms and results);
 - c) Hydraulic model parameters (cross-sections, bridges, culverts, boundary conditions, Manning's 'n', etc.);
 - d) Methods of calibration/verification;
 - e) Dam information, if applicable; and
 - f) Wind, wave, ice analyses, if applicable
- 5. Confirm that the flood line delineation discussed in the report provides a clear presentation of the results with appropriate reference to the modelling results and that the results are reasonable and defendable.

3. FRAMEWORK FOR TECHNICAL REVIEW

The Ontario Ministry of Natural Resources and Forestry (MNRF), formally known as the Ontario Ministry of Natural Resources (MNR), produced a technical guide in 2002 titled "River & Stream Systems: Flooding Hazard Limit" (referred to as "the MNRF guide" in this letter report). This MNRF guide was prepared to assist in the understanding of the 1996 Provincial Policy Statement and updates to the original 1986 Flood Plain Management in Ontario, Technical Guideline Publications. This document provides a substantial level of technical guidance for flood plain mapping studies in Ontario and is currently being used as a guideline reference for other flood plain mapping projects in the Ottawa area.

Reference to the MNRF guide is provided periodically throughout the draft report. In the absence of an updated publication, the MNRF guide is considered a suitable reference document for the current MVCA flood plain mapping study.

As indicated in the MNRF guide "It [the technical guide] is not intended to be a list of mandatory instructions or technical methodologies to be rigidly applied in all circumstances, rather, it serves to assist technical staff experienced in water resources in the selection of the most appropriate computational method and flexible implementation measures, provided the decisions made are consistent with the latest Provincial Policy Statement". Although the technical guide is not a list of mandatory instructions, it does provide a means by which we can assess the draft MVCA report in terms of conformance to standard methodology in flood plain mapping studies in Ontario.

This technical review focuses specifically on the draft flood plain reporting prepared by MVCA. The following sections will use the MNRF guide as a framework to address all items detailed in **Section 2.0** of this letter report.

4. PRELIMINARY REVIEW

JFSA completed a preliminary review and initial screening of MVCAs' draft report titled Casey Creek Flood Plain Mapping Report (dated January 2020) and supporting documentation. JFSA formalized this preliminary review by providing comments to MVCA on March 13th, 2020 (see **Attachment 1**). MVCA responded to the preliminary review comments and subsequently provided JFSA with an updated draft report and additional hydrologic modelling files, as requested, on March 20th, 2020.

5. SELECTING FLOOD PLAIN STANDARD

According to Figure B-1 of the MNRF guide, the Mississippi Valley jurisdictional area (which includes the Casey Creek watershed) falls within Zone 2. In general, the 100-year flood is the governing flood plain standard for this zone. The exception to using the 1:100-year flood for Zone 2 is if there are recorded or documented flood levels found in the same watershed which exceeded the computed 1:100-year flood levels. The MNRF guide suggests that if the observed event is at least 0.1 m higher than the computed 100-year water level and the watershed characteristics have not changed since the historical observation, then the historical event should be considered for flood plain standard.

The 2020 Provincial Policy Statement identifies the flooding hazard limit as "the greater of:

- the flood resulting from the rainfall actually experienced during a major storm such as the Hurricane Hazel storm (1954) or the Timmins storm (1961), [these specific storms are not applicable to MNRF Zone 2, where Casey Creek is located], transposed over a specific watershed and combined with local conditions, which evidence suggests that the storm event could have potentially occurred over watersheds in the general area;
- 2. the one hundred year flood; and
- 3. a flood which is greater than 1. or 2. which was actually experienced in a particular watershed or portion thereof as a result of ice jams and which has been approved as the standard for that specific area by the Minister of Natural Resources and Forestry"

MVCA has acknowledged that the 1:100-year flood is the flood plain standard to be used in preparing their flood risk maps for the Casey Creek. This is described in Section 1.1 on page 4 of the draft report.

In the absence of an observed water surface elevation (WSEL) in excess of 0.1 m above the 1:100-year and without knowledge of any regulation that would supersede the Provincial Policy Statement referenced above with respect to the flood plain standard, JFSA would agree MVCA has followed the applicable guidelines appropriately.

6. HYDROLOGIC ANALYSIS

6.1 Approach and Methodology

Section 2.1 on page 9 of the draft report indicates MVCA has completed hydrologic modelling to estimate peak flows for Casey Creek. It is noted SWMHMO version 4.02 was the chosen software used to simulate peak flows. This software is widely used for flood plain mapping studies in the City of Ottawa and surrounding areas and suitable for this study.

JFSA acknowledges there are no flow records currently available for Casey Creek and as such, using a hydrologic model is considered a reasonable alternative to a single station or regional frequency analysis.

 It is noted MVCA's draft report acknowledges the flow gauge located on the Carp River at Kinburn (HYDAT ID 02KF011). Suitable justification has been provided for not completing a statistical analysis on this gauge for use or comparison purposes in this particular flood plain mapping study considering the watershed characteristics of the Carp River are quite different from Casey Creek including a drainage area that is more than four times larger. As such, MVCA does not believe flow transpositions based on a frequency analysis of this gauge would result in representative flow values for Casey Creek. These are suitable justifications for MVCA's selected approach for hydrologic analysis.

6.2 Hydrologic Parameters

JFSA completed a cursory review of the hydrologic parameter selection and calculations to confirm general conformance with applicable guidelines. The following subsections provide a brief assessment of the parameters reviewed.

6.2.1 Drainage Area Delineation

It is noted that a SWMHYMO model was previously prepared by MVCA for Constance Creek which included the overall drainage area boundary of Casey Creek. As such, the model for Constance Creek was used as the basis for this study. It is also noted on page 12 of the draft report that sub-catchment areas were delineated from the Digital Elevation Model (DEM) developed by the City of Ottawa using LiDAR information. JFSA offers the following comments regarding the drainage area delineations:

- Page 10 of the draft report indicates that Casey Creek was represented in the Constance Creek SWMHYMO model by eight subcatchment areas. The current study areas are also discretized into eight subcatchment areas, however the report indicates these were redistributed. It is acknowledged that the overall drainage area has remained approximately the same (within 0.15%) and that in itself would have minimal impact on the hydrologic results.
- Figure 5 on page 12 and Table 1 on page 14 of the draft report includes drainage areas for the eight subcatchments delineated which range between 173.9 ha and 2847.4 ha. It is recommended MVCA complete more refined drainage area delineations (smaller subcatchments) to assess the potential impact on peak flows. For example, area A2 has a large drainage area of 2847.4 ha which appears to have variable hydrologic characteristics across the subcatchment. The north western portion is more predominantly wetland and wooded areas while the north eastern portion is more predominantly agricultural land (as shown on Figure 2). Considering each area could have a different hydrologic response it is warranted to check the associated impact to peak flows through further discretization.

6.2.2 Route Channel

• Page 14 of the draft report provides a brief description of the representation of the ROUTE CHANNEL commands in the SWMHYMO model and placement of flow notes. For flow

node 3 it is noted that routing occurs through the center of subcatchment 6 and the peak flow from that subcatchment is added at the downstream end. It is assumed portions of subcatchment A6 will drain into the tributary prior to node 3. As such the model may underestimate peak flows along this routing segment. It is recommended MVCA review this route channel command and provide due consideration to adding additional inflow points accordingly.

• Similar to the above, subcatchment A3 is added directly downstream at flow node 8, however a portion of subcatchment A3 will drain to the tributary prior to node 8. It is recommended MVCA review and provide due consideration to adding additional inflow points accordingly.

6.2.3 Time of Concentration

As described on page 15 of the draft report, MVCA has reviewed the applicability of a number of methods to calculate the time of concentration for the sub-catchments including the Airport Formula, Bransby-Williams Formula, Kirpich Formula and SCS Lag Equations. JFSA offers the following comments:

- It is noted the calculation methods chosen by MVCA for the hydrologic model are the Airport Formula and the Bransby- Williams Formula as they are the most applicable to the individual subcatchments for Casey Creek. This is considered a reasonable approach for this study.
- It is recommended MVCA review the profiles of all flow paths and give due consideration to the MTO 85/10 method where applicable. This method avoids the distorting effects of a steep upper portion of a watershed or the effects of a highly irregular or convex or concave profile.
- It is noted, the time to peak values included in the SWMHYMO models for the SCS design storms do match those values provided on Table B2 in Appendix B, however, models for the Chicago storms and spring rainfall-snowmelt storms do not. It is recommended MVCA review this and update the models and/or report accordingly to ensure consistency. It is acknowledged time to peak values have been adjusted as described in Section 2.5, page 22 in the draft report. Refer to technical review comments in Section 6.3 of this memo for additional comments.

6.2.4 CN and Initial Abstraction (Ia) Calculations

It is noted MVCA has determined CN values for a variety of land uses and hydrologic soil types which are provided on Table B3 in Appendix B of the draft report. JFSA offers the following comments on the CN calculations:

- It is shown on Table 1 of the draft report that the CN values reflecting AMC III hydrologic conditions are smaller compared to AMCII. Considering this does not follow typical convention, it is recommended MVCA review and adjust these parameter values as required.
- It is noted CN values not shown on Table 4 are applied in the SWMHYMO model for the Chicago design storms. Those used appear to match the CN values calculated in Appendix B (unadjusted values). It is recommended MVCA update the modelling to suit or otherwise include descriptions in the report justifying the selection of CN values for each type of design storm.
- It is noted a list of CN values used for each land use and soil type is provided on Table B3 in Appendix B of the draft report. This table includes a CN value of 50 for water. Although it is acknowledged the 1997 MTO Drainage Management Manual provides a value of 50 for water, it is recommended MVCA use a higher CN value of given that all of the precipitation that falls on a water surface such as a lake will become runoff.

It is acknowledged that MVCA has investigated an alternate procedure to the modified CN (or CN*) approach in which the value of Ia is reduced to 0.075*S ('S' is soil storage) and 0.01*S for soil groups A and B respectively. The draft report indicates the Ia values calculated using 0.075*S would be between 4 mm and 15 mm for the areas studied. Finally, on page 17, the draft report indicates Ia values were set to 2.5 mm for all subcatchments in the SWMHYMO model. It is noted that typically, using the modified SCS approach, the CN values would be reduced to CN* values in concert with a reduction in the Ia value (to less than 0.2*S). The combination of using a low Ia value with a standard CN value may overestimate peak flows, particularly for smaller CN values. Although the report indicates that the relatively low values of Ia were set to be conservative, it is recommended that MVCA include further detail on the difference in peak flows if selected CN values were replaced with CN* values. Reducing CN values to CN* is a more justifiable approach than simply reducing Ia values and arbitrary reductions in CN, as described in Section 2.5 of the draft report.

6.2.5 SWMHYMO Precipitation Input

It is noted MVCA has used the Ottawa Sewer Design guidelines as the source to derive summer design rainfall events for their hydrologic model which are presented on Table 2 of the draft report.

- It is noted on page 21 of the draft report that the data used to derive rainfall depths was from the IDF curves derived from rainfall records at the Ottawa International Airport between 1967 and 1997. This is considered a reasonable data source given the record length and proximity of Casey Creek to the Ottawa International Airport.
- It is noted MVCA has developed a procedure to derive spring rainfall-snowmelt synthetic design storms using data from the Meteorological Service of Canada. One, three and five day snowmelt events were considered, volumes distributed near the middle of the day and sine curve used to distribute the volume. Although JFSA is not aware of a standard procedure to follow to derive synthetic rainfall-snowmelt events, the procedure followed by MVCA appears reasonable.

6.3 Verification of Model Performance

Section 2.5 of the draft report provides details of the verification of modeled results and comparison. JFSA offers the following comments:

- It is acknowledged MVCA has completed an exercise using the Ontario Flow Assessment Tool (OFAT) produced by MNRF. It is also noted MVCA has completed a comparison of drainage areas generated using the OFAT tool and those determined for the current study and found them to compare reasonably well (within approximately 3% of each other).
- There are large differences noted between the peak flows generated using SWMHYMO and those estimated using the Index Flow and Multiple Regression Methods (approximately 200% to 300% higher at four comparison locations) for the current study during the initial model simulations as reported in Section 2.5 of the draft report. It is noted that the previous 2017 study of Constance Creek, also completed by MVCA, adjusted CN values (decreased by 10%) to bring OTTHYMO/SWMHYMO peak flows closer to the range determined by these other methods. In the current study, CN values are decreased by 15% in combination with doubling the Tp value. It is recommended MVCA rather modify hydrologic parameters based on what is most representative and justifiable. This may include revisiting the CN and time to peak calculations.

6.4 Comparison to Previous Studies

• It is noted MVCA has completed a comparison of peak flows between previous studies of Constance Creek as well as a compilation of watersheds with similar size and land use

within MVCA and RVCA jurisdictions. This method of comparison helps to ensure simulated peak flows are within an appropriate range and a suitable method for this study.

- It is recommended MVCA add the drainage area of each individual creek/drain compared on Figure 7 of the draft report as the size of the watershed will have an impact on the unit peak flows.
- It is recommended MVCA revisit the comparisons shown on Figure 7 following changes to their modelling as a result of the enclosed technical review comments.

7. HYDRAULIC ANALYSIS

It is noted that HEC-RAS software (version 5.0.7) was used to study Casey Creek. This modeling software is widely used in Ontario, used for other flood plain mapping projects in the Ottawa area and considered sufficient for this flood plain study.

The HEC-RAS modelling files used for this technical review include:

(Summer Model Files – 12-Hour SCS)

- Project: HEC-RAS Model (Casey Creek.prj)
- Plan: Casey (Casey Creek.p03)
- Geometry: Casey (Casey Creek.g03)
- Steady Flow: Default Steady Flow (Casey Creek.f01)

7.1 Flow Inputs

A cursory review of the draft report sections 3.1 (Methodology) and 3.2 (Input Parameters) was completed. JFSA offers the following comments:

- Section 3.1 on page 38 of the draft report refers to the development of an estate residential subdivision and associated channel alterations works. Although detailed topographic data may not be available, if hydrologic characteristics of this development are available, it is recommended MVCA directly incorporate this information into the hydrologic model.
- It is noted modelled flows have been prorated to obtain peak flows at intermediate locations. It is recommended that MVCA rather complete more detailed drainage area discretization to obtain these peak flows. Refer to Section 6.2.1 of this memo for additional review comments.

7.2 Review of Cross Section Data

7.2.1 Cross-Sectional Geometry

A cursory review of the cross-sectional geometry and the descriptions provided in the draft report has been completed. JFSA offers the following comments:

- It is noted on page 40 of the draft report that a DEM derived from LiDAR was used to
 produce the cross-section data in the HEC-RAS model, which is representative of above
 water elevations. JFSA acknowledges this inherently adds some conservatism to the
 available cross section conveyance capacity. Supplementing the LiDAR derived crosssection geometry with field verified cross sections would further provide confidence to the
 model and worth consideration by MVCA.
- It is noted in Section 3.2 on page 40 of the draft report that the cross-sections are oriented left to right looking downstream. The cursory review has identified this is not the case for three cross sections including 809 (River: Casey, Reach: Trib 1-DS-0), 1 (River: Casey, Reach: Main-DS-1-DS-0) and 1293 (River: Casey, Reach: Main). It is recommended MVCA review cross section orientations and update the HEC-RAS model accordingly.

- It is noted cross section 827 (River: Casey, Reach: Main) extends into an adjacent spill area outside of the flood conveyance path. It is recommended MVCA update this cross section to only allow flow through the main channel.
- It is noted there are a number of cross sections in which the left and right bank stations are not correctly located. For example, cross section 622 (River: Casey, Reach: Trib 3) are both applied along the left bank geometry of the cross section. It is recommended MVCA review the placement of all left and right bank stations and update the model accordingly.

7.2.2 Overbank Lengths

As per the HEC-RAS Hydraulic Reference Manual, channel reach lengths should be measured along the thalweg. Overbank reach lengths should be measured along the anticipated path of the center of mass of the overbank flow. Although these lengths are of generally similar value, there are conditions where they differ significantly such as at river bends or where the channel meanders and overbanks are straight.

• Cursory checks of the reach lengths for the left and right overbanks indicate efforts have been made to adjust lengths and are in general conformance with the HEC-RAS methodology described above.

7.2.3 Manning's 'n' Coefficients

The methods used and selection of Manning's 'n' coefficients are provided on page 41 of the draft report. The range of values selected is between 0.045 and 0.1 for overbanks and 0.032 for the main channel as well as 0.013 and 0.024 for concrete and CSP culverts, respectively. These values generally fall within the applicable range of standard values.

 A cursory review of the Manning's 'n' coefficients selected, and aerial photos indicates there are locations where MVCA could consider higher values in the overbanks to represent forested/heavy brush areas more appropriately within the study area. It is recommended MVCA review these areas and give due consideration to updating the model accordingly.

7.2.4 Ineffective Flow Areas

It is noted that ineffective flow areas have been placed at the cross sections immediately upstream and downstream of all nine crossings included in the HEC-RAS model. This follows typical HEC-RAS convention to capture the contraction and expansion of flow and associated losses through these structures. JFSA offers the following comments regarding ineffective flow areas:

- The elevations specified for ineffective flow should generally correspond to elevations where significant flow passes over the crossing. For the upstream cross section, this is normally set at the lowest point of the top of road. At the downstream cross section, the elevation is normally set initially to an elevation below top of road (such as between low chord and lowest point of the top of road). It is recommended MVCA review the selection of ineffective flow elevations against these guiding principles and update the HEC-RAS model accordingly. For example, the ineffective flow areas applied at the upstream side of the Marchurst Road crossing (River: Casey, Reach: Trib 2, River Sta. 3483) are set at elevations above the road surface.
- It is noted the ineffective flow areas placed left and right of the culvert in cross section 2704 (River: Casey, Reach: Main) are not set at the appropriate location and blocking a portion of the culvert opening. This is also the case at cross section 840 (River: Casey, Reach: Trib 2) and cross section 2089 (River: Casey, Reach: Main-DS-1-DS-0). It is recommended MVCA review these cross sections and update the position of the ineffective flow areas accordingly.

7.2.5 Contraction and Expansion Coefficients

JFSA completed a comparison between the contraction/expansion coefficients and the draft flood plain geometry prepared by MVCA. JFSA offers the following comments:

- It is noted MVCA has applied contraction and expansion coefficients of 0.1 and 0.3 at most cross sections other than those adjacent to structures. This generally conforms to HEC-RAS modelling convention.
- It is noted there are inconsistencies in the HEC-RAS model regarding the increase in contraction and expansion coefficients in cross sections adjacent to structures. In general, the contraction and expansion coefficients should be increased at the first two cross sections upstream and first cross section downstream of structures in the HEC-RAS model. It is recommended MVCA review these cross sections and update the model accordingly.

7.2.6 Levees

It is noted MVCA has included levees at five select cross sections in their HEC-RAS model. JFSA offers the following comments regarding levees:

Judgment should be made in the placement of levees with respect to which areas of the cross section are likely to convey flow if that elevation is overtopped. This judgment will include an investigation of looking at both upstream and downstream cross sections for similar conveyance features. If a conveyance channel appears to be present in one cross section but the adjacent ones do not contain these same features, then it is not likely the middle cross section will convey flow at that location. Levee locations in this case would be set to prevent bank overflow into what may only appear to be a conveyance channel. It is recommended MVCA provide due consideration of these principles in selecting the location of levees for use in their HEC-RAS modelling.

7.2.7 Junctions

• It is noted junctions Junc-DS02, Junc-DS03, and Junc-DS04 appear to include junction lengths which are not representative of the distance to adjacent cross sections. It is recommended MVCA review all junctions and confirm the junction lengths used are correct.

7.3 Boundary Conditions

The explanation provided by MVCA on pages 41, 42 and 43 of the draft report regarding boundary conditions are considered reasonable.

 It is noted Flood Hazard Map 10 shows a study limit line such that the closest cross section to Constance lake that is mapped in this study is 1160. At this cross section, the governing scenario is the 100-year flow on Casey Creek in combination with the 2-year water level on Constance Lake. The report and Flood Hazard Map are consistent at this location and respect the boundary condition as described in the report.

7.4 Review of Structures

A cursory review of the nine structures included in the HEC-RAS model was completed. JFSA offers the following comments:

 As noted in section 7.2.4 of this memo, the ineffective flow areas in the downstream cross section of the structure located at river station 2724 (River: Casey, Reach: Main) appear to be blocking a section of the culvert opening. There is also a warning message at this culvert location regarding the ineffective flow area being set in too far. It is recommended MVCA review this and update the model accordingly.

- It is noted there is structure missing from the hydraulic model which could potentially affect flood line delineations. The location between river station 2704 and 2541 (River: Casey, Reach: Main). It is recommended MVCA review this crossing and provide due consideration to adding it to the model.
- It is noted the entrance loss coefficient appears to be set to 0.5 for all culverts. It is
 recommended this value be selected based on the applicable inlet geometry. For example,
 the structure located at river station 1300 (River: Casey, Reach: Main) appears to be for a
 corrugated metal pipe that is projecting from fill. For this inlet configuration, the standard
 entrance loss coefficient should be set to 0.9, however a value of 0.5 has been selected. It
 is recommended MVCA review the entrance loss coefficients for all structures giving due
 consideration to inlet geometries in the selection of this coefficient.
- It is noted the simulated 100-year WSEL at the upstream side of the crossing located at river station 1326 (River: Casey, Reach: Trib 1-DS-0) is approximately 4 m higher than the WSEL on the downstream side. There is also a warning message indicating the flow in the culvert is entirely supercritical. The structure at river station 699 (River: Casey, Reach: Main-DS-1) shows similar results. It is recommended MVCA review these structures to ensure the simulated results are accurate.
- There are a number of warning messages noted in the HEC-RAS model associated to structures. It is recommended MVCA assess the reasons behind warning messages and update the model to eliminate these warning messages if possible.

7.5 Sensitivity Analysis

A cursory review of the sensitivity analysis was completed. JFSA offers the following comments:

 For the sensitivity analysis, it is recommended MVCA consider including the potential impact(s) of using the 100-year WSEL on Constance Lake in combination with a 100-year design storm on Casey Creek. This would be a test of the sensitivity of the boundary condition selected and of the MVCA conclusion that high water levels at the confluence of the two watercourses will be generated by two independent flood events.

8. FLOOD LINE DELINEATION

8.1 Flood Hazard Maps

JFSA has completed a cursory review of the draft flood hazard maps for Casey Creek which include map index numbers 1 through 10. JFSA offers the following comments:

- As indicated on page 48 of the draft report and Flood Hazard Map 9, there are five spills shown. Considering three of the spills are directed toward the same area, it is recommended MVCA give due consideration to delineating the flood plain in this area.
- As described on page 49 of the draft flood plain mapping report, it is acknowledged MVCA has not reduced flood flows as a result of spills. This is considered a conservative and reasonable approach for those areas from which the spills occur.

We trust the technical review comments enclosed will assist the City of Ottawa and MVCA toward the successful completion of this flood plain mapping project.

9 STATEMENT OF LIMITATIONS

Our technical review of MVCAs draft Casey Creek Flood Plain Mapping Study was limited to the specific scope of work for which we were retained and that is described in this report. Our review comments should be evaluated in light of this limited scope of work.

JFSA has relied in good faith on all information provided and does not accept responsibility for any deficiencies, misstatements, or inaccuracies contained in the report as a result of omissions, misinterpretation, or fraudulent acts of the persons contacted or errors or omissions in the reviewed documentation and data.

JFSA is not a guarantor of the accuracy, completeness or adequacy of this information provided by others. JFSA assumes no responsibility or liability for errors or omissions resulting from inaccuracies in the data received from others. JFSA assumes no responsibility for any negligence by others related to the data provided for this technical review.

JFSA has provided technical review comments based on the information received. Final decisions regarding how these comments are addressed is not the responsibility of JFSA.

JFSA warrants only that its work was undertaken, and technical review comments prepared in a manner consistent with the level of skill and diligence normally exercised by competent engineering professionals practicing in the Province of Ontario.

Respectfully Submitted,

J.F Sabourin and Associates Inc.

Dryan Will

Bryan Willcott, P.Eng. Project Engineer in Water Resources, JFSA

cc: J.F Sabourin, M.Eng., P.Eng. Director of Water Resources Projects

Attachment 1 - Completed Pre-Screening Checklist for Casey Creek

Project Ref #:P1747(06) Client: City of Ottawa Ottawa, ON Paris, ON Gatineau, QC Montréal, QC Québec, QC

Attachment 1

Pre-Screening Checklist

Projec	st Name: Casey Creek Flood Plian Mapping Study		Checklist Completed By: JFSA Comments Provided By:	John Price Bryan Willcott	Date: 28-Jan-20 Date: 13-Mar-20		
		Floo	d Hazard Mapping Study Check	list			
		DOCUMENTATION INCLUDED? Y = Yes, N = No, NA = No Applicable		CA COMMENTS	JFSA PRELIMINARY TECHNICAL REVIEW (SCREENING) COMMENTS		
1.0	PROJECT INFORMATION						
1.1	General description of the watercourse	UY NN NA	Section 1.2	-	ок		
1.2	Description of study area and mapping limits (including land use, overall imperviousness, etc.)	I Y □N □NA	Section 2.2 and 2.3 Table 1	-	ок		
1.3	Description of past flood plain studies and mapping for this watercourse (<i>list in comments</i>)	Y N NA	Section 1.3	Constance Creek Flood Plian Mapping Study M. E. Andrews (1994) Constance Creek Flood Plain Mapping Study (April 2017), Mississippi Valley Conservation Authority	ок		
1.4	Description of background drainage reports, SWM reports, etc. that were used to complete current study (<i>list in comments</i>)	Y N NA	Section 2.3	Marchurst Estates Kanata,City of Ottawa - Revised Stormwater Management Report (Januray 2014), Stantec	ок		
2.0			HYDROLOGIC ANALYSIS				
2.1	Floodplain standard selected (ie: 1:100 year storm, historical storm, etc.)	⊡y □n □na	Section 2.6	MVCA watershed is within Zone 2 and therefore the Regulatory flood hazard criterion is the 1:100 year flood. To employ a different flood stadard would require prior approval of the Minister of Natural Resources and revision to the MVCA regulation (Ontario Regulation 153/06)	ок		
2.2	Clear identification of which hydrologic data has been measured and which data has been assumed	IY □N □NA	Section 2.3 Appendix B and C	-	ОК		
2.3	The source of all hydrologic data used in the analysis is clearly documented and justified	IY □N □NA	Section 2.3 Appendix B and C	-	ок		
2.4	Tables, maps and/or graphs included to illustrate data such as stream flow records, historical storms, stage-discharge relationships, cross sections and profiles	IY IN INA	Appendix B and C.		ок		
2.5	Flood Frequency Analysis used? If not, continue to 2.6.	🛛 Y 🗋 N 🗹 NA	-	-	ок		
	2.5.1 Description of stream flow and rainfall records	□y □n ☑na	-	-	ОК		
	2.5.2 Description of conversion of regulated stream flows to natural conditions (<i>if stream is subject to significant artificial</i> <i>regulation by dam, diversions, etc. that have significant</i> <i>effects on peak flows</i>)	Y N V NA	-	-	ОК		
	2.5.3 Single Station Frequency analysis used? If so:	Y N NA	-	-	ок		
	2.5.3.1 Data used, choice of probability distribution and method of parameter estimate documented		-	-	ОК		

Project	Name:	Casey Creek	Flood Plian Mapping Study				Checklist Completed By: JFSA Comments Provided By:	John Price Bryan Willcott	Date: 28-Jan-20 Date: 13-Mar-20
						Flood	Hazard Mapping Study Check	list	
		REQUIREI	D DOCUMENTATION	IN Y = Yes, I	JMENT/ CLUDE N = No, pplicab	ATION D? NA = Not	FLOOD PLAIN MAPPING REPORT	CA COMMENTS	JFSA PRELIMINARY TECHNICAL REVIEW (SCREENING) COMMENTS
	2.5.4	Regional Flood	d Frequency analysis used? If so:	ΓY	□ N	✓ NA	-	Index Flood Method and Multiple Regression Method , through the Ontario Flow Assessment Tool, used for compariosn as detailed in Section 2.4	ок
	1	2.5.4.1	The extent of the region and streams included are described along with the records used at each station	ΠY	□ N	🗹 NA	-		ок
2.6	Rainfall/R	unoff Modelling	used? If not, continue to 2.7.	Υ	N	🔲 NA	-	-	ОК
	2.6.1	Description of previous use	the basic methodology, assumptions and	Y	N 🗌	NA NA	Section 2.4.2	-	OK. Methodology is noted in Section 2.1.
	2.6.2	All hydrologic i	nput parameters fully documented	Υ	□ N	NA 🗌	Tables 1, 2 and 4	-	OK. Descriptions provided in Section 2.3.
	2.6.3	Complete dese reports	cription of data extracted from background	УY	□ N	NA 🗌	Section 2.3 and 2.6	-	ок
	2.6.4	SWM ponds ir	ncluded in the hydrologic modelling	Υ	□ N	✓ NA	-	No SWM facilituies in watershed	ок
		2.6.4.1	Source of SWM pond data clearly identified	Υ	N 🗌	✓ NA	-	-	ОК
		2.6.4.2	Clear identification of the stage-storage- outflow relationship of the SWM ponds	Υ	□ N		-	-	ОК
		2.6.4.3	Clear identification of controlled and uncontrolled drainage areas	Υ	N 🗌	✓ NA	-	-	ОК
	2.6.5	Description an	d justification for rainfall data used	Υ	□ N	🗖 NA	Section 2.4.2	-	ОК
	2.6.6	records used a simulated flow	method of calibration and validation, the and documentation of the comparison of s with flows obtained from other analysis Regional Frequency or Rational Method)	Y	□ N	NA NA	Section 2.5	-	ок
2.7	Flows pre	sented in tabul	ar form for different events and locations	Υ	□ N	🔲 NA	Table 5A to 5J	-	ок
2.8	Comparis	on of flows with	previous estimates and recorded events	Y	N 🗌	NA NA	Section 2.6.1	-	ок
3.0							HYDRAULIC ANALYSIS		

Project	Name: Casey Creek Flood Plian Mapping Study			Checklist Completed By: JFSA Comments Provided By:	John Price Bryan Willcott	Date: 28-Jan-20 Date: 13-Mar-20
		F	lood	Hazard Mapping Study Check	list	
	REQUIRED DOCUMENTATION	DOCUMENTATIO INCLUDED? Y = Yes, N = No, NA Applicable	NC	FLOOD PLAIN MAPPING REPORT	CA COMMENTS	JFSA PRELIMINARY TECHNICAL REVIEW (SCREENING) COMMENTS
3.1	General description of the topography of the flood plain documented	UY 🗋 N 🗌	NA	Section 1.2	-	ок
3.2	Method(s) for obtaining cross sections documented	V N	NA	Section 3.2	-	ОК
3.3	Summary of all structures and appurtenances (inlet and outlet configurations, headwalls, wing walls, piers, abutments, inverts, etc.)		NA	Appendix F	-	ОК
3.4	Description / source of the roughness coefficients selected	V DN	NA	Section 3.2	-	ОК
3.5	Description / source of the starting water level (downstream boundary condition)	DY □¤ □	NA	Section 3.2 and 3.3	-	ОК
3.6	Description of extrapolation of stage-discharge curves of monitored data	U V N V	NA	-	-	ОК
3.7	Description of the backwater hydraulic software used		NA	Section 3.1	-	ОК
3.8	Description of which coefficients used in the hydraulic software where obtained by direct or indirect measurement	₽Y ∎N □	NA	Section 3.2	-	ОК
3.9	Description of the reasons behind water level differences as compared to previous studies	UY DN E	NA	-	No previous hydraulic studies	ОК
3.10	Description of the techniques employed and calculations completed for ice or log jams	U V DN V	NA	-	-	ОК
3.11	For lakes, wind setup and wave estimates are documented	UY UN Ø	NA	-	-	ОК
3.12	Description of the effect of dams or dykes on hydraulic modelling	U V D N V	NA	-	-	ОК
3.13	Tabular summary of backwater computations listing water levels for different flows and locations.		NA	Appendix G	-	ОК
3.14	Summary of previous backwater analysis and observed past flood events documented	□y □n ₹	NA	-	No observed past flood events	ОК
3.15	Description of calibration and validation of the backwater model	□y □n ₽	NA	-	-	ОК
3.16	Summary of the sensitivity analysis documented	IY □N □	NA	Section 3.3.1	-	ок
3.17	Identification of spill areas in the hydraulic models and commentary on the effect of the spill		NA	Section 4.1	-	ОК

Project	Project Name: Casey Creek Flood Plian Mapping Study					Checklist Completed By: JFSA Comments Provided By:	John Price Bryan Willcott	Date: 28-Jan-20 Date: 13-Mar-20
					Flood	Hazard Mapping Study Check	list	
	REQUIRED DOC	UMENTATION	IN Y = Yes,	CLUDE	, NA = Not		CA COMMENTS	JFSA PRELIMINARY TECHNICAL REVIEW (SCREENING) COMMENTS
4.0			1			FLOOD LINE DELINEATION	1	
4.1	Description of flood line delineati	n	Υ	N	🔲 NA	Section 4.0	-	ок
	4.1.1 Date of aerial photos		Υ	N I	🔲 NA	Section 4.0	-	ок
	<i>4.1.2</i> Scale		Υ	□ N	🔲 NA	Section 4.0	-	ок
	4.1.3 Topographic contour i	ntervals	Υ	N I	🔲 NA	Section 4.0	-	ок
	4.1.4 Accuracy		Υ	□ N	🔲 NA	Section 4.0	-	ок
4.2	Explanation of the methodology	used to plot flood lines	⊻ Y	N 🗌	🔲 NA	Section 4.0	-	ок
4.3	Clear explanation of spill location	s and study limits shown on maps	٧	□ N	🔲 NA	Appendix D	See flood plain maps	ок
4.4	Description of floodway and flood encroachment on the flood plain	I fringe zones and the effect on	ΠY	N	✓ NA	-	-	ок
4.5	Description of the effect of dams	or dykes on flood lines	ΠY	□ N	🖌 NA	-	-	ок
5.0						EXHIBITS	-	
5.1	Location maps identifying study a	ireas	٧	□ N	🔲 NA	Appendix D	-	ок
5.2	Identification of historically floode	d areas	ΠY	□ N	🖌 NA	-	No information	ок
5.3	Identification of location of major	structures, bridge data sheets	۲	□ N	🔲 NA	Appendix F	-	ок
5.4	Historical photos		ΠY	N 🗌	🖌 NA	-	-	ок
5.5	Tables and hydrographs to provi and mean velocities with cross s	de summary of discharges, elevation ection references	٧	□ N	🔲 NA	Appendix G	-	ок
5.6	Flood frequency curves		ΠY	Ν	🖌 NA	-	-	ок
5.7	Where a two zone application is velocities across the flood fringe section	used, computed width, depth and areas at both sides of the cross	ΠY	N 🗌	🗹 NA	-	-	ок

Project	Name: Casey Creek Flood Plian Mapping Study	_	Checklist Completed By:	John Price	Date: 28-Jan-20
			JFSA Comments Provided By:	Bryan Willcott	Date: 13-Mar-20
		Flood	I Hazard Mapping Study Check	list	
	REQUIRED DOCUMENTATION	DOCUMENTATION INCLUDED? Y = Yes, N = No, NA = No Applicable	FLOOD PLAIN MAPPING REPORT t PAGE/APPENDIX REFERENCE	CA COMMENTS	JFSA PRELIMINARY TECHNICAL REVIEW (SCREENING) COMMENTS
5.8	Plot of flood profile		Appendix E	-	ок
5.9	Plots of all cross sections as well as water surface profiles for each flood event considered		Appendix E	-	ОК

	Casey Creek Floor	d Plain Mapping Report
	JFSA Comment	MVCA Response
		ogic Analysis
1	It is recommended MVCA complete more refined drainage area delineations (smaller subcatchments) to assess the potential impact on peak flows.	A more detailed drainage area delineation was completed, the number of subcatchments was doubled in the revised hydrologic model.
2	Portions of subcatchment A6 will drain into the tributary prior to note 3. It is recommended MVCA review this route channel command and provide due consideration to adding additional inflow points accordingly	Subcatchment A6 was split into smaller subcatchments to provide additional inflow points.
3	A portion of subcatchment A3 will drain to the tributary prior to node 8. It is recommended MVCA review and provide due consideration to adding additional inflow points accordingly.	Subcatchment A3 was split into smaller subcatchments to provide additional inflow points.
4	It is recommended MVCA review the profiles of all flow paths and give due consideration to the MTO 85/10 method where applicable.	The MTO 85/10 method was utilized in the revised hydrologic model.
5	It is noted, the time to peak values included in the SWMHYMO models for the SCS design storms do match those values provided on Table B2 in Appendix B, however, models for the Chicago storms and spring rainfall- snowmelt storms do not. It is recommended MVCA review this and update the models and/or report accordingly to ensure consistency.	The time-to-peak values were updated in the report.
6	It is shown on Table 1 of the draft report that the CN values reflecting AMC III hydrologic conditions are smaller compared to AMCII. Considering this does not follow typical convention, It is recommended MVCA review and adjust these parameter values as required.	The CN values were updated in the report.
7	It is noted CN values not shown on Table 4 are applied in the SWMHYMO model for the Chicago design storms. Those used appear to match the CN values calculated in Appendix B (unadjusted values). It is recommended MVCA update the modelling to suit or otherwise include	The CN values were updated in the model and report.

	descriptions. It is recommended MVCA update the modelling to suit or otherwise include descriptions in the report justifying the selection of CN values for each type of design storm.	
8	It is noted a list of CN values used for each land use and soil type is provided on Table B3 in Appendix B of the draft report. This table includes a CN value of 50 for water. Although it is acknowledged the 1997 MTO Drainage Management Manual provides a value of 50 for water, It is recommended MVCA use a higher CN value of given that all of the precipitation that falls on a water surface such as a lake will become runoff.	A CN value of 50 was used for water and wetland land uses for all hydrologic soil types. Although all precipitation that falls on this lad use could initially produce runoff, depending on the outlet configuration/restriction this runoff will not necessarily be conveyed downstream (i.e. stored within the waterbody or wetland). Since the water depth or return period flood event at which conveyance downstream occurs is not specifically known a CN value of 50 was employed. Within the Casey Creek watershed, there is approximately 475 ha of wetland area (8.6% of the total watershed area) and only 35 ha of water (0.6% of the total watershed area). Since these two land uses comprise a relatively small percentage of total drainage area, using a higher CN value would have minimal impact on the calculated weighted CN value used in the analysis and hence an even smaller impact on the calculated flow values.
9	Although the report indicates that the relatively low values of Ia were set to be conservative, it is recommended that MVCA include further detail on the difference in peak flows if selected CN values were replaced with CN* values.	The CN values were not lowered and the CN* numbers were not used in the revised model.
10	There are large differences noted between the peak flows generated using SWMHYMO and those estimated using the Index Flow and Multiple Regression Methods (approximately 200% to 300% higher at four comparison locations) for the current study during the initial model simulations as reported in Section 2.5 of the draft report. It is noted that the previous 2017 study of Constance Creek, also completed by MVCA, adjusted CN values (decreased by 10%) to bring OTTHYMO/SWMHYMO peak flows closer to the range determined by these other methods. In the current study, CN values are decreased by 15% in combination with doubling the Tp value. It is	MVCA developed a new hydrologic model that did not require arbitrary reductions of model parameters.

	recommended MVCA rather modify hydrologic parameters based on what is most representative and justifiable. This may include revisiting the CN and time to peak calculations. It is recommended MCVA rather modify hydrologic parameters based on what is most representative and justifiable. This may include revisiting the CN and Time to peak calculations.	
11	It is recommended MVCA add the drainage area of each individual creek/drain compared on Figure 7 of the draft report as the size of the watershed will have an impact on the unit peak flows.	The drainage area is accounted for in the specific peak flows (L/s/Ha).
12	It is recommended MVCA revisit the comparisons shown on Figure 7 following changes to their modelling as a result of the enclosed technical review comments.	Figure 7 was updated with the revised modeling results.
	Hydra	ulic Analysis
13	The report refers to the development of an estate residential subdivision and associated channel alterations works. Although detailed topographic data may not be available, if hydrologic characteristics of this development are available, it is recommended MVCA directly incorporate this information into the hydrologic model.	Detailed hydrologic information was not available; however, a slightly increased CN number was used in this subcatchment to reflect the proposed development.
14	It is recommended that MVCA rather complete more detailed drainage area discretization to obtain peak flows at intermediate locations rather than prorated.	Addressed in the revised version of the hydrologic model.
15	It is noted in Section 3.2 on page 40 of the draft report that the cross-sections are oriented left to right looking downstream. The cursory review has identified this is not the case for three cross sections including 809 (River: Casey, Reach: Trib 1-DS-0), 1 (River: Casey, Reach Main-DS-1-DS-0) and 1293 (River: Casey, Reach: Main). It is recommended MVCA review cross section orientations and update the HEC-RAS model accordingly.	Cross-sections were reviewed and the flow directions were corrected in the revised hydraulic model.
16	It is noted cross section 827 (River: Casey, Reach: Main) extends into an adjacent spill area outside of the flood	A levee was added on the right side to confine the flow within the conveyance path.

	conveyance path. It is recommended MVCA update this	
	cross section to only allow flow through the main channel.	
17	It is noted there are a number of cross sections in which the left and right bank stations are not correctly located. For example, cross section 622 (River: Casey, Reach: Trib 3) are both applied along the left bank geometry of the cross section. It is recommended MVCA review the placement of all left and right bank stations and update the model accordingly.	Bank stations were corrected in the revised model as appropriate.
18	A cursory review of the Manning's 'n' coefficients selected, and aerial photos indicates there are locations where MVCA could consider higher values in the overbanks to represent forested/heavy brush areas more appropriately within the study area. It is recommended MVCA review these areas and give due consideration to updating the model accordingly.	As mentioned in the report, higher Manning's 'n values were used in the model on appropriate river reaches. 'For the flood plain (left and right overbanks), the flood plain vegetation is fairly uniform for most of the study reaches of Casey Creek consisting of pasture or crop field with some isolated areas of light brush. Therefore, a Manning's n value of 0.045 was used for most of the flood plain areas. In a few short reaches, this value was increased to 0.06 to represent more dense and mature vegetation. Downstream of Dunrobin Road, the vegetation becomes heavier. Therefore, a Manning's n value of 0.1, as noted in Table 5-6 (Ven Te Chow), corresponds to a flood plain with medium to dense brush, in summer was used for that reach in the HEC-RAS model'.
19	The elevations specified for ineffective flow should generally correspond to elevations where significant flow passes over the crossing. For the upstream cross section, this is normally set at the lowest point of the top of road. At the downstream cross section, the elevation is normally set initially to an elevation below top of road (such as between low chord and lowest point of the top of road). It is recommended MVCA review the selection of ineffective flow elevations against these guiding principles and update the HEC-RAS model accordingly. For example, the ineffective flow areas applied at the upstream side of	Placements of ineffective areas were reviewed and revised as appropriate.

	the Manakaust Deed an entry (Diverse Conserved), Table 2			
	the Marchurst Road crossing (River: Casey, Reach: Trib 2,			
	River Sta. 3483) are set at elevations above the road			
	surface.			
	It is noted the ineffective flow areas placed left and right of			
	the culvert in cross section 2704 (River: Casey, Reach:			
	Main) are not set at the appropriate location and blocking			
	a portion of the culvert opening. This is also the case at	Placements of ineffective areas were reviewed and revised as		
20	cross section 840 (River: Casey, Reach: Trib 2) and cross	appropriate.		
	section 2089 (River: Casey, Reach: Main-DS-1-DS-0). It is			
	recommended MVCA review these cross sections and			
	update the position of the ineffective flow areas			
	accordingly.			
	It is noted there are inconsistencies in the HEC-RAS model			
	regarding the increase in contraction and expansion			
	coefficients in cross sections adjacent to structures. In			
21	general, the contraction and expansion coefficients should	Contraction and expansion coefficients were reviewed and revised as		
21	be increased at the first two cross sections upstream and	appropriate		
	first cross section downstream of structures in the HEC-RAS			
	model. It is recommended MVCA review these cross			
	sections and update the model accordingly.			
	Judgment should be made in the placement of levees with			
	respect to which areas of the cross section are likely to			
	convey flow if that elevation is overtopped. This judgment			
	will include an investigation of looking at both upstream			
	and downstream cross sections for similar conveyance			
	features. If a conveyance channel appears to be present in			
22	one cross section but the adjacent ones do not contain	All levees in the model were reviewed and placed following their		
22	these same features, then it is not likely the middle cross	upstream and downstream conveyance features as appropriate.		
	section will convey flow at that location. Levee locations in			
	this case would be set to prevent bank overflow into what			
	may only appear to be a conveyance channel. It is			
	recommended MVCA provide due consideration of these			
	principles in selecting the location of levees for use in their			
	HEC-RAS modelling.			
L	5			

		1
23	It is noted junctions Junc-DS02, Junc-DS03, and Junc-DS04 appear to include junction lengths which are not representative of the distance to adjacent cross sections. It is recommended MVCA review all junctions and confirm the junction lengths used are correct.	Junction lengths were reviewed and corrected as required.
24	As noted in section 7.2.4 of this memo, the ineffective flow areas in the downstream cross section of the structure located at river station 2724 (River: Casey, Reach: Main) appear to be blocking a section of the culvert opening. There is also a warning message at this culvert location regarding the ineffective flow area being set in too far. It is recommended MVCA review this and update the model accordingly.	Ineffective flow areas were reviewed and corrected as required.
25	It is noted there is structure missing from the hydraulic model which could potentially affect flood line delineations. The location between river station 2704 and 2541 (River: Casey, Reach: Main). It is recommended MVCA review this crossing and provide due consideration to adding it to the model.	The water crossing structure is included in the revised model.
26	It is noted the entrance loss coefficient appears to be set to 0.5 for all culverts. It is recommended this value be selected based on the applicable inlet geometry. For example, the structure located at river station 1300 (River: Casey, Reach: Main) appears to be for a corrugated metal pipe that is projecting from fill. For this inlet configuration, the standard entrance loss coefficient should be set to 0.9, however a value of 0.5 has been selected. It is recommended MVCA review the entrance loss coefficients for all structures giving due consideration to inlet geometries in the selection of this coefficient.	Entrance loss coefficients were reviewed and revised as appropriate. The structure located at river station 1300 of the original model (River: Casey, Reach: Main) is a Concrete pipe with a square-cut end and a value of 0.5 was used as entrance loss coefficient.
27	It is noted the simulated 100-year WSEL at the upstream side of the crossing located at river station 1326 (River: Casey, Reach: Trib 1-DS-0) is approximately 4 m higher than the WSEL on the downstream side. There is also a	Both these structures (at Tributary 1 and Main-DS-1) are upstream of the abandoned railway line crossing (now utilized as a trail). The crossing has a fairly small opening (3.0 m span by 1.0 m rise) and there is over 4.5 m of cover (fill) above the obvert of the culvert to the top of the

	warning message indicating the flow in the culvert is entirely supercritical. The structure at river station 699 (River: Casey, Reach: Main-DS-1) shows similar results. It is recommended MVCA review these structures to ensure the simulated results are accurate.	minimum top of the road/trail. This crossing orientation does cause a substantial increase in the upstream water elevation. These structures were reviewed and the revised hydraulic model run with a mixed flow regime also simulated similar results as the 1-D steady-state model.
28	There are a number of warning messages noted in the HEC- RAS model associated to structures. It is recommended MVCA assess the reasons behind warning messages and update the model to eliminate these warning messages if possible.	Messages were reviewed and eliminated as appropriate.
29	For the sensitivity analysis, it is recommended MVCA consider including the potential impact(s) of using the 100- year WSEL on Constance Lake in combination with a 100- year design storm on Casey Creek. This would be a test of the sensitivity of the boundary condition selected and of the MVCA conclusion that high-water levels at the confluence of the two watercourses will be generated by two independent flood events.	The scenario, 100-yr WSEL (60.9 m) at Constance Creek with 100-yr flows at Casey Creek did not produce any difference in the WSEL upstream of XS 1160 at the downstream end.
	Flood Li	ne Delineation
30	As indicated on page 48 of the draft report and Flood Hazard Map 9, there are five spills shown. Considering three of the spills are directed toward the same area, it is recommended MVCA give due consideration to delineating the flood plain in this area.	A 2D model was developed and analyzed for this spill area and the results were consistent with the 1D model results.